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Abstract

Optical recording of brain activit y useselectronic imaging to deducehypothesizedpat-

terns of neural, metabolic, or hemodynamic activation. The spatial resolution of optical

recording has not previously beenquantitativ ely established. This work estimates the ex-

pectedspatial point spreadfunction and photon attenuation of optical recording in cortical

tissue. Empirically measuredin vivo scattering crosssectionsfor 633nanometerwavelength

photons wereusedin a Monte Carlo simulation of accumulated photon scatter through dif-

ferent thicknessesof cortex, simulating the e�ect of di�eren t focal plane depths in a volume

of tissue. A Gaussianbeam decomposition of a standard (macroscope) lens system used

in optical recording is used to model the point spread error due to the di�ractiv e (wave

optics) component of the instrumentation. The �nal system performanceis estimated by

a three-dimensionalconvolution of thesetwo results, yielding the full-width-half-maxim um

(FWHM) of the point spreadfunction and the photon attenuation, for valuesof focal plane

and neural depth (i.e. laminar depth in the cortex) comparable to current experimental

v



usage. The point spread function is used to interpret optical recording measurements of

visual cortical orientation maps. Since cortical orientation responseis characterized by a

vector valued function de�ned over the cortical surface(i.e. a responseamplitude and an

orientation for each cortical location), its measurement is subject to a systematic spatial

o�set associated with the low-passnature of optical recording. This causesthe apparent

location of the orientation singularities to be displaced from their true location, and can

even causeneighboring singularities to \annihilate", intro ducing error in the estimate of

orientation singularity density and spacing. The results of this thesis provide quantitativ e

estimatesfor the two major limitations of the useof optical recording in the measurement

of cortical functional architecture. Strong photon attenuation tends to limit measurement

to super�cial laminae of the cortex, and low-pass �ltering causedby the joint e�ects of

optical depth of �eld and photon scatter causesa systematic shift in the location and den-

sity of orientation centers. These results are discussedin the context of quantitativ e and

qualitativ e interpretation of contemporary orientation mapping experiments.
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Chapter 1

In tro duction: functional architecture in visual

cortex

1.1 Early exp erimen tal observations

The term functional architecture was intro duced in the landmark paper of Hubel and

Wiesel (1974). This paper demonstrated a number of important observations concerning

the supra-neuronalpattern of neuronal responseparametersin V1 (primary visual cortex).

Sequence regularit y: A constant angular change in preferred orientation for cortical

neurons was observed when the recording micro-electrode made long penetrations

roughly parallel to the cortical surface. The period of this repetition was about 500

microns in Macaqueand about 1000microns in cat (seeFigure 1.1(a)).

Ocular dominance: Following earlier observations (Hubel and Weisel, 1962), neurons

which were more strongly driven by the left with respect to the right eye were clus-

tered with a period of about 500 microns (seeFigure 1.1(b)).

Receptiv e �eld scatter: The centers of the local neural receptive �eld positions were

observed to be \scattered" with a variance roughly equal to the size of the local

receptive �elds (about 1mm). The visual �eld projections (in degrees)varied roughly

in proportion to the angular distancesfrom the fovea.1

1The existence of scatter is now a matter of controversy. Das and Gilb ert (1997) found that by more
carefully �xing the position of the eye that was being measured, they reduced the scatter to very small
values.
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(a) (b) (c)

Figure 1�1: (a) Evidence for \sequenceregularity" from micro-electrode tracks suggestedthe existenceof an
orderly map of orientation to spacein V1 (Hubel and Wiesel, 1974; Leventhal et al., 1995). (b) Evidence for
ocular dominancecolumnsfrom reducedsilver staining demonstratedthe existence,in the Macaque,of an orderly
map of ocularit y to spacein V1 (LeVay et al., 1975). (c) Suggestedpattern for orientation (front edge)and left
or right eye ocular dominance(right edge) in V1, the ice-cube model (Hubel and Wiesel, 1974).
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1.2 Early theoretical mo dels

The observations of orientation and ocular dominanceperiodicit y of about the samesize,

together with the graded scaling of receptive �eld position and scatter motivated the the-

oretical concept of the hypercolumn (Hubel and Wiesel, 1974).

Hyp ercolumn A modular unit of size roughly 1mm2 (Macaque) contains a full set of

\basic analyzers" for orientation, ocularit y and spatial position, and repeats, in a

constant period mosaicacrossthe surfaceof V1 (Hubel and Wiesel, 1974).

Ice-cub e mo del To illustrate the hypercolumn model, the so-calledice-cube model was

presented, in which \orien tation columns" that were parallel, tiled the individual

hypercolumn structure (seeFigure 1.1(c)).

1.3 Imaging versus electro-ph ysiology

The early observations of Hubel and Weisel were dependent on micro-electrode (electro-

physiological) recording. It is important to emphasizethat the use of microelectrodes to

infer large scalestructure has been, and is today, problematic. The sparsesampling and

sampling bias2 associated with extra-cellular microelectrode recording doesnot lend itself

to the provision of an accurate supra-neuronalaccount of functional architecture. For this

reason,as of 1974, there was as yet:

� no direct anatomical observation of the layout or detailed nature of ocular dominance

columns;

� no model for cortical magni�cation factor or two-dimensionalcortical map structure;

� no observation of the relatively large (150 microns) (Horton, 1984) periodic patches

of V1 populated by neurons with un-oriented receptive �elds (cytochrome oxidase

pu�s);

2Micro electrode tip size and construction strongly in
uence the class of neurons which are able to
contribute extra-cellular potentials, causing poorly understood biases towards di�eren t size and types of
cells.
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� no observation of orientation singularities (later known as pinwheels). Singularities

are arbitrarily small areasof the cortical orientation map where all orientations are

simultaneously present.

Clari�cation of theseissuesawaited the development and application of anatomical and

brain imaging methods.

1.4 Anatomical and brain imaging studies of functional architecture

1.4.1 Ocular dominance columns

In 1975,LeVay et al. (1975) published striking evidencefor the existenceof ocular domi-

nancecolumns, using a reduced silver stain, in the one-eye-enucleated Macaque (seeFig-

ure 1.1(b)). This establishedthat the representation of left and right eye a�erents in Layer

IV of V1 were not the \soft" sinusoidal modulation, as had beensuggestedby earlier mi-

croelectrode studies, but were in fact a \hard" square-wave alternation with a lessthan 50

microns transition zonerepresenting the changebetweenleft eye and right eye a�erents (in

Layer IVc of the Macaque. Similar anatomical experiments, especially with cytochrome

oxidase, con�rmed the dramatic \zebra-strip e" pattern of ocularit y in primate V1, show-

ing a degreeof structure much more graphic and geometric than had been the picture

only a few years earlier. Figure 1�2 shows an example of a computer 
attened, full hemi-

spherespecimen of cytochrome oxidase stained, one-eye enucleated Macaque V1 showing

the ocular dominancecolumn pattern (Schwartz, 1994).

1.4.2 Cyto chrome oxidase pu�s

A dramatic addition to the hypercolumn picture wasprovided by evidence,observed in cy-

tochrome oxidasestained material, that there are regionsof higher than averagemetabolic

activit y, in layers 2 and 3 of V1, referred to variously as either \blobs" or \pu�s" (Living-

stone and Hubel, 1984a). These pu�s have been shown to be strongly \centrated" with

respect to the ocular dominancecolumn strip esin layer IVc|they are tightly clusteredon

the mid-lines of the ocular dominancecolumns (Livingstone and Hubel, 1984b).
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(a)

(b)

Figure 1�2: Ocular dominance columns stained for cytochrome oxidase
(Macaque), with coronal sections computer reconstructed and 
attened
(from Schwartz, 1994). Applying an oriented, anisotropic band-pass �l-
ter to white scalar noisegeneratedbetween[-1,1], �ltered, and thresholded
produced the synthetic image shown on the bottom.
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Neuronslocated in the pu� regions(seeFigure 1�3) havebeenreported to bemore tuned

to chromatic stimuli, but lesstuned to oriented or elongatedstimulus energy (Livingstone

and Hubel, 1988).

1.5 Transition from the ice-cub e mo del to orien tation vortices and pin-
wheels

1.5.1 Orien tation vortices and the complex logarithm

The rectilinear layout of orientation slabs that Hubel and Weisel had suggestedin the

ice-cube model (Figure 1.1(c)) represented details considerably beyond the range of mi-

croelectrode recording, and was therefore conjectural. Other early modeling in this area

suggestedthat a periodic orientation singularity might lurk, like a black-hole, in the center

of the Hubel and Weisel ice-cube. The �rst suggestionof this type was made in terms of

the geometric properties of the complex logarithm function. Schwartz (1977b) had shown

that cortical magni�cation factor, which represented the magnitude of the derivative of the

global cortical topographic map, was approximately accounted for by the two-dimensional

map function of the complex logarithm function. It was also suggestedthat the geometric

properties of the complex logarithm, applied on a local scale, might account for the se-

quenceregularity observations of Hubel and Weisel(Schwartz, 1977a). The reasonfor this

is that the complex logarithm is the unique analytic function (in two dimensions) which

maps orientation to a linear progression,as Hubel and Weiselhad suggestedby the term

\sequenceregularity". This can be shown by assigning � = arctan( y
x ) to the coordinate

v in a mapping of the form T : (x; y) ! (u; v) where T(x; y) represents the local struc-

ture of topographic mapping between retinal coordinates (x; y) and cortical coordinates

(u(x; y); v(x; y)). Such a mapping represents the detailed (but unknown and unobserved)

a�erent input from the retina, (through the LGN), that is ultimately \summed" by cortical

neurons to produce an oriented trigger feature. The question addressedin this work was:

What two-dimensional(e.g., complex-analytic) function provides a mapping of an orienta-

tion in the domain (i.e., the retina) to a rectilinear coordinate function in the range (i.e.,
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(a)

Figure 1�3: Cytochrome oxidase blobs of the macaque visual cortex
(reprinted from Horton, 1984).
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the cortex)? If a mapping is to be complex analytic (i.e., di�eren tiable to all orders), then

it must satisfy the Cauchy-Riemann equations, ux = vy and uy = � vx (Ahlfors, 1966). If

the cortical coordinate function is represented as v(x; y) = � = arctan( y
x ), as is suggested

by the description of sequenceregularity3, then vx = � yp
x2+ y2

and vy = xp
x2+ y2

. Thus,

the unique solution for the function u(x; y) required by the Cauchy-Riemann equationsfor

the \sequenceregularity" condition v(x; y) = � is u = log(
p

x2 + y2). The two functions

log(r ) and � make up the complex logarithmic mapping w = log(z) = log(r ) + i� , where

z = x + iy . Thus, the complex logarithm is the unique complex-analytic two-dimensional

map function which is consistent with Hubel and Weisel'sstatement of sequenceregularity,

i.e., that cortical orientation responsesproceedin a linear progressionacrossthe cortical

surface.

However, the association of the logarithm with the real part u(x; y) of this mapping

requiresa singularity at the origin wherez = 0. This \lo cal complex logarithmic mapping"

is reproduced in Figure 1�4a. Although similar to the ice-cube model, there is a singularity

in the center of this model, represented in the �gure as a black line, which is appropriate

for a local map function of the form log(z) that is singular at z = 0, i.e., at the center. In

this samework, a periodic tiling of the plane with logarithmic singularities was suggested

in the form of the mapping w = log(cn(z)), where the Jacobian elliptic function cn(z) is

doubly periodic, with two zerosand two polesin each cell of an in�nitely repeating lattice. 4

The logarithm of an elliptic function is thus doubly periodic (Morse and Feshbach, 1953),

with logarithmic singularities of alternating positive and negative sign, corresponding to

the winding number around the singular points. A plot of part of one cell of this log

Jacobian elliptic pattern is shown in Figure 1�4, in the form of its iso-angle lines. This

structure was termed an orientation vortex, since it represents the velocity potential of a

3Note that in the ice-cube model, a strictly linear progressionin the cortical coordinate v is a progression
in � , as illustrated in Figure 1.1(c), and this is true everywhere. In the later pinwheel model, the ice-cube
property was only assertedto hold in regions that were spacedfar from pinwheel centers, i.e., the so-called
\linear regions".

4The Jacobian elliptic functions are the unique analytic functions which are doubly periodic in the full
complex plane, and which have two isolated zeros and two isolated poles in each unit cell (Ahlfors , 1966;
Morse and Feshbach, 1953).
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uid mechanical vortex pattern or, equivalently , the electrostatic potential of a row of line

chargesheld between two ground planes (seeMorse and Feshbach, 1953, pg. 1158). This

local model wascombined with a global complexlogarithmic model via w = log(cn(log(z))),

and a plot of the angular part of this function is shown in Figure 1�4. The regular Mosaicof

angular hypercolumns,with orientation singularities in the center, embeddedin an overall

logarithmic spatial structure, is evident in this demonstration.

1.5.2 Pin wheels

Several years after the logarithmic Jacobian elliptic function model was published, the

pinwheel model was suggestedas a possible alternativ e to the original ice-cube model

(Braitenberg and Braitenberg, 1979). The underlying model for the pinwheel structure

wasthe suggestionthat a relatively rare classof very large cortical cells, \Martinoti Cells",

were the nuclei of an orientation pattern drawn by these authors to resemble a doubly

periodic pattern of pinwheels, as reproduced in Figure 1�5. However, no mathematical

analysis of any kind was provided in this work.

Despite the fact that the underlying Martinotti Cell hypothesis that was presented

to justify this model rapidly faded from view, and has never been pursued further, the

term pinwheel has come into universal use. At the time of its intro duction, the major,

and perhaps sole, merit of this idea was the suggestionthat Hubel and Weisel's earlier

microelectrode recording techniques might have been too sparsely sampled to reject the

pinwheel structure. The pinwheel hypothesis generated a great deal of interest among

neuroscientists but there was as yet no direct evidenceto discriminate in favor of either

the pinwheel or ice-cube hypotheses. However, with the intro duction of in-vivo optical

recording from primate and cat visual cortex in the mid-1980's,this situation would rapidly

change.
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Figure 1�4: (a) Figure 5 from Schwartz (1977a) is reprinted here. This
shows the angular part of a \lo cal" complex logarithmic mapping. This
�gure corresponds to an orientation hypercolumn. The singular region is
shown as a vertical black strip e down the center of the �gure, appropri-
ate for a function such as log(z), which is singular along the vertical axis
representing <f log(z)g = 0. A �nite version of this �gure, with a full set
of periodic orientation hypercolumns, is modeled in terms of the Jacobian
elliptic function log(cn(z)) discussedin the original work on this subject
(Schwartz, 1977a). (b) A plot of the angular part of the logarithm of a Ja-
cobian elliptic function. This is basically the sameas local logarithmic map
function, but hasperiodic boundary conditions, i.e., it \tiles" the plane.The
radial curvesrepresent level valuesof orientation and the concentric curves,
strength of orientation response. (c) Sameas above, but the a global topo-
graphic map is included. This is a plot of the angular part of the function
w = log(cn(z)) suggestedby Schwartz (1977a). Grey scalevaluesrepresent
di�ering orientation values.
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1.6 Optical recording and cortical orien tation maps

Optical recording from neural tissue had �rst beenperformed by Hill and Keynes (1949),

and was, in somesense,pre�gured by the observation of Roy and Sherrington (1890) that

cortical blood perfusion associated with neural activit y was visible. Later work by Chance

et al. (1962) continued this line of research. However, the �rst application of optical

recording methods to imaging cortical columnar structure was reported by Blasdel and

Salama (1986), using voltage sensitive dyes in the monkey, and soon after by Grinvald

et al. (1986) using intrinsic recording methods in the cat.

Although Blasdel and Salama(1986) usedvoltage sensitive dyes,most subsequent work

in this area has usedintrinsic recording, which is basedon the fact that somecombination

of blood perfusion, changes in the balance of oxy- and deoxy-hemoglobin, and possible

swelling of cell volume due to osmotic changesassociated with the local electro-chemical

balance, causesan observable, although small (roughly 0:5%) change in the re
ection of

visible light from the cortical surface. The precisesourceof the optical re
ectance changes

in activated cortex are not entirely understood at present, but on empirical grounds, it is

clear that there is a changein the video signal imaging cortex that is activated by sensory

stimuli.

Using these methods, Blasdel and Salama (1986) demonstrated the existenceof what

they termed a \v ortex" pattern in primate visual cortex. Grinvald and his collaborators,

and others, adopting the term pinwheel, have provided many further examples.

Demonstration, via optical recording, that an apparent pinwheelorientation map exists

in cat (Grinvald et al., 1986), ferret (Chapman et al., 1996), and monkey (Blasdel and

Salama, 1986) V1 advancedthe acceptedstructure of V1 from the ice-cubemodel of 1974to

its modern form. The striking nature of the pinwheelpattern, particularly whenorientation

is color-coded, has appeared on the cover of virtually every major journal in the �elds

of experimental and computational neuroscience. In addition to providing experimental

clari�cation of the ice-cube/pinwheel issue,�v e major experimental �ndings have emerged
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from the useof optical recording to study cortical orientation maps:

Cen tration: Orientation singularities are located in the center of ocular dom-inancecol-

umns.

Orthogonalit y: Orientation columns intersect ocular dominancecolumns orthogonally.

O�set of pin wheels and cyto chrome oxidase pu�s: Although both cytochrome oxi-

dasepu�s and pinwheelscenters are periodic, and occur in the center of ocular domi-

nancecolumns,and have the sameperiodicit y asthe ocular dominancecolumns, they

are \o�set" from each other such that the pu�s and pinwheelsare not concentric.

(Bartfeld and Grinvald, 1992)

Strong orien tation tuning at pin wheel centers: Although the optical recording re-

sponseis minimal at pinwheelcenters, the neuronal tuning at thesecenters is strong,

similar to that in regionsthat are far from the pinwheel centers.

Das-Gilb ert lo cal map: Das and Gilb ert (1997), using a combination of microelectrode

recording (to determine receptive �eld position) and optical recording (to determine

orientation gradient and pinwheel location), have claimed that there is a local cor-

relation between receptive �eld position and rate of orientation change. This is an

extremely important result, sinceit posits the existenceof a local topographic struc-

ture, linked to the orientation map, and contradicts the observation of scatter made

by Hubel and Wiesel (1974). At the present time, this extremely important result

has received only a single attempt at con�rmation, by Hetherington and Swindale

(1999), who concluded that \Our �ndings give little hint of [those of Das-Gilbert],

although they do not explicitly contradict theseresults."

Theseresults, which represent the current understanding of the local functional archi-

tecture, are summarized in Figure 1�6 (with the exception of the Das-Gilbert map, which

has not been replicated, and is not illustrated in the �gure). We refer to the currently

acceptedmodel illustrated in Figure 1�6 as the Grinvald model.
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(a)

Figure 1�5: The pinwheel pattern for cortical orientation map structure
of Braitenberg and Braitenberg (1979). The lines connecting the vertices
represent level valuesof orientation.

(a)

Figure 1�6: The currently acceptedmodel of cortical orientation mapping,
according to Bartfeld and Grinvald (1992), which we refer to as the current
Grinvald model. Note the o�set of the cytochrome oxidase blobs (white
ovals) from the centers of the orientation pinwheelcenters. Colors represent
di�ering orientation values,while the L and R slabsrepresent left and right
ocular dominancecolumns.
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In a recent dissenting opinion concerningthe Grinvald model, Dow has suggestedthat

\orien tation singularities coincide with cytochrome oxidase blobs" (see Dow, 2002, page

1013). Dow's position seemsto be basedon simple common sense:How could it be true

that the cytochrome oxidasepu�s, which are large (150 microns), periodic regionsof weak

orientation tuning at the neuronal level, locatedpreciselyin the centers of ocular dominance

columns, with a period of 500{600 microns, fail to coincide with orientation pinwheels

centers, which also residein the centers of ocular dominancecolumns,and which represent

regionsof weak population level orientation response?In the model illustrating this idea,

suggestedby Bartfeld and Grinvald (1992), summarized in Figure 1�6, the cytochrome

oxidase blobs are drawn exactly � =2 degreesout of phasewith the pinwheel centers. Dow

suggeststhat this is erroneous,the sourceof error being that \orien tation singularities are

identi�ed in living tissue, while cytochrome oxidase pu�s are determined post-mortem"

(Dow, 2002). He goes on to list three possiblesourcesof error which causean apparent

misalignment of thesetwo very similar systems:

1. uneven tissue shrinkagecould account for the discrepancy,

2. pressureon the brain from the optical recording apparatus could account for shifting

the physiological pattern, and

3. vascular pulsations could causea mis-alignment of the in-vivo measurements.

As Dow implicitly suggests,there is a critical detail which must be established:What is

the spatial precisionof optical recording? How preciseis the allegedlocation of a pinwheel

singularity that is determined by optical recording?

For the answer to this question, one would assumethat a clear answer would be forth-

coming from the review articles that have been written on the methodology of optical

recording. However, this is not the case. In a recent review of optical recording method-

ology (Grinvald et al., 2001), the spatial resolution of optical recording is variously stated

as 300 microns, 100 microns, and 50 microns, but no de�nition of the term \resolution" is

given, nor is any support for theseclaims cited.
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In another section of this samereview(page34), it is stated that:

\The reproducibilit y in the location of pinwheel centers suggestthat the reso-

lution of the di�eren tial optical imaging may be better than 50 microns."

This is somewhatdisconcerting,sincereproducibilit y is a necessary, but not a su�cien t con-

dition for accuracy, as the sameauthors state a bit later in their review: \repro ducibilit y is

a necessarybut not su�cien t criterion. . . electrophysiological or histological con�rmations

are necessary". Unfortunately, despite an exhaustive literature search, no electrophysio-

logical, histological, or computational con�rmation of the basicspatial resolution of optical

recording has beenpublished to date, except for the experiment conductedby Orbach and

Cohen (1983) (which we shall discussin Chapter 3). Curiously, however, Grinvald et al.

(2001) mention an unpublished experimental study of this question (Vanzetta, Kam, and

Grinvald, unpublished), in which 
uorescent beadswere imaged at di�eren t depths in a

milk phantom, i.e., a substitute for turbid cortical tissue, in order to measurethe attenua-

tion and FWHM of optical recording. Unfortunately, they do not report the results of this

study, which has remained unpublished.

1.6.1 Possible errors in comparing optical recording to anatomical data

The list of experimental problemsprovided by Dow (2002), in order to account for possible

discrepancybetweenanatomical and optical recording measurements of cortical orientation

maps, can be amendedwith the following:

Photon scatter: Photons traveling through turbid (cortical) media experiencesigni�cant

scattering and attenuation.

Optical depth of �eld: The optical systemmost often usedwith optical recording is the

Macroscope (Grinvald et al., 2001), which has extremely small depth of �eld, and so

is signi�cantly out-of-focus for most of the region of cortex which is imaged. This is

claimed to be a signi�cant advantage of the Macroscope, sincerelatively large blood

vesselsnear the surfaceare completely \blurred" out of existenceby this property of
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the Macroscope (Grinvald et al., 2001). However, no quantitation of the magnitude

of this e�ect is provided, nor is there any discussionof the potentially seriousissue

of invalidating the accuracyof the data due to blurred contributions out of the plane

of focus.

Orien tation under-sampling: Roughly 2/3 of the orientation mapping experiments that

have beenperformed (in the cat) have used only four orientations to probe the ori-

entation map. Womelsdorfet al. (2001) performed an experiment in which the same

specimen of cat cortex was imaged with four, eight, and sixteen test orientations.

They found substantial displacements of pinwheelcenters, and annihilation of neigh-

boring pinwheels, in the under-sampled four orientation condition. Although they

did not provide a reasonfor this observation, undersampling intro ducesa low-pass

�ltered condition on the data (in addition to other e�ects of aliasing), and low-pass

�ltering of pinwheel data has been shown to be capable of producing the observed

shifting and annihilation of pinwheels(Schwartz and Rojer, 1994). For example, a

sequenceof increasingFWHM low-pass�ltered random orientation maps is shown in

Figure 1�7.

1.6.2 Lowpass �ltering of scalar and vector value images: the essence of the

problem

Imaging a scalarvaluedpattern with a low-passFWHM isotropic blur increasesthe variance

of the location of a point-source, but leaves its centroid unchanged. However, imaging a

vector valued pattern, as is the casefor orientation maps5, which have both magnitude and

direction, causesfar more seriouserror. This is becausethe orientation maps which make

up the pinwheel pattern are essentially mappings of S1 ! R2, i.e., they are an assignment

of an angle (an element of S1, the boundary of the unit disk) and the cortical surface(an

element of R2). It has beenwell known, at least from the time of Klein and Poincare, that

the lack of topological equivalencebetweenS1 and R2 requiresthe existenceof \puncture"

singularities, i.e., local logarithmic poles,pinwheels,vortices, etc. It was recognizedfairly



17

(a)

Figure 1�7: An isotropic Gaussian �lter is used to smooth random unit
vector �elds. The orientation of the vector �elds is shown, for variouschoices
of FWHM (2:35� = FWHM ) of the two-dimensionalGaussian�lter.
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early that the topological orientation defectsof the kind observed in liquid crystals might

be a model for cortical pinwheels (Schwartz and Merker, 1986; Winfree, 1987). It has

beenmore recently understood that any form of local correlation of orientation mapping,

including Gaussiansmoothing of spatial orientation noise,will produce pinwheel patterns

asshown in Figure 1�7 (Schwartz and Rojer, 1992, 1994). In other words, pinwheelpatterns

are the locally correlated noise pattern associated with orientation maps! Therefore, the

true state of the cortical orientation map, when imagedwith an instrument with a low-pass

characteristic can be quite di�eren t from the apparent observed orientation map, a result

which has recently been establishedby direct experimentation (Womelsdorf et al., 2001),

in addition to having been demonstrated via computer simulation (Schwartz and Rojer,

1994).

The di�erence between the \true state of nature" of an orientation map, and the em-

pirically observed image data of it can manifest in several ways:

� A random orientation map, if such were to be the casefor V1, would artifactually

appear to be a well-structured pinwheel map, with the spacing between pinwheel

centers determined by the FWHM of the measurement kernel. This is certainly not a

correct model for V1, sincethere is much independent evidencefor the existenceof a

non-randomorientation map in V1. However, for FWHM in the rangeof 300microns,

it becomesdi�cult to reject the null hypothesisthat the underlying orientation map

is random.

5Strictly speaking, orientation maps are a direction �eld, not a vector �eld, since orientation direction
takes values in [0; � ) rather than [0; 2� ). Topologically, this means that orientation direction takes values
in P 1 , one-dimensional projectiv e space, rather than S1 , the unit 1-sphere. However, S1 and P 1 are
topologically equivalent. There are only two distinct 1-manifolds: the real line and the real-line modulus
somenumber (Milnor , 1965). The topological equivalenceof S1 and P 1 can be shown directly , by exhibiting
a homeomorphism betweenthem, which is multiplication of orientation by 1

2 . In fact, this homeomorphism
is routinely applied in the optical recording literature, where the orientation of a grating is multiplied by
2 in order to make the color-coded pinwheel maps that are commonly shown. These issuesare the source
of much confusion in this literature. There is considerable discussion of \half-phase singularities" versus
\full-phase singularities", which are indexes with values values of � 1

2 (half-phase) or � 1 (full-phase) (see
Swindale, 1997). In fact, half-phase and full-phase singularities are topologically the same. The only issue
is one of labeling, i.e., of multiplying an orientation by 2. In this thesis, we will ignore this distinction, and
treat orientation singularities as full-phase singularities.
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� Alignment of anatomical patterns (e.g., cytochrome oxidase pu�s) would appear to

be shifted away from observed pinwheel centers, with the magnitude of the shift

determined by the details of the FWHM of the measurement kernel.

� Measurements of orientation tuning obtained near apparent pinwheel centers might

be actually obtained from data that is shifted away from pinwheel centers by the

FWHM of the observational technique.

If the measurement kernel FWHM is equal to, or lessthan 50 microns, aswassuggested

anecdotally (Grinvald et al., 2001), then the e�ects of the FWHM of the measurement

kernel are insigni�can t. However, if the FWHM of the instrumentation beginsto approach

150 microns (or half of the spatial period of the pinwheels, which is about 300 microns

(Macaque)) then seriousdeformation of the data occurs.

In order to pursuethis idea further, and clarify why a FWHM at around the half-period

of the pinwheelmodule frequencyrepresents a dangerpoint for interpreting optical imaging

of orientation columnsmaps,a more detailed discussionof the topological issuesassociated

with orientation maps will be provided in the next section.

1.7 The mathematical basis of the pin wheel pattern as �ltered noise

Pinwheelmapsthat are indistinguishable from the orientation mapspresented in the optical

recording literature can be readily produced by spatial �ltering orientation noise (i.e., a

two-dimensional �eld of randomly generatedunit vector) (Rojer and Schwartz, 1990) as

shown in Figure 1�8.

Ocular dominancecolumn maps that are indistinguishable from the ocular dominance

patterns presented in the optical recording (and anatomical) literature can be readily pro-

ducedby spatial �ltering scalar noise(i.e., a uniform random variable in the range [� 1; 1])

assignedto a two-dimensional image domain. An example of an isotropic band-pass�l-

ter is shown in Figure 1�10. An anisotropic band-pass�lter is required to actually model

Macaqueocular dominancecolumns, although an isotropic �lter is a reasonablemodel for
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(a)

Figure 1�8: An example of synthetic pinwheels. The chiralit y (left- or
right-handed changeof orientation) is indicated by circles and boxesat the
singularity. As required by the sign theorem (Tal and Schwartz, 1997), pin-
wheelsalternate betweenclock-wiseor anti-clockwisechiralit y asonefollows
a speci�c level line of the orientation map function (e.g., the zero-crossings).
This is a trivial topological feature associated with the continuous nature
of the smoothing that has produced this map from random orientations.
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the cat (Rojer and Schwartz, 1990). A demonstration of the range of di�eren t types of

ocular dominancecolumn patterns, conditioned by di�eren t choicesof �lter parameters, is

shown in Figure 1�9.

These examplesdemonstrate that the columnar systemsof visual cortex can be pro-

ducedvia a Wiener process,the result of spatially �ltering random patterns that are either

two-dimensional scalar �elds (ocularit y, a scalar � 2 [� 1; 1]) or two-dimensional vector

�elds (orientation, a vector �v 2 [0; 2� ), as pointed out by Rojer and Schwartz (1990)).

In the caseof Macaqueocular dominancecolumns,an anisotropic and oriented bandpass

(e.g., Gabor or DOG) �lter is su�cien t. Such a �lter can be speci�ed by four parameters:

an orientation, an aspect ratio (anisotropy), a center frequency, and a bandwidth. Using

accurate computer-
attened examplesof ocular dominance columns, Rojer and Schwartz

(1990) estimated thesefour parametersfor the Macaque,the results of which are depicted

in Figure 1�2.

In the caseof Macaquepinwheels,an isotropic band-pass�lter is su�cien t, a synthetic

exampleof which is shown in Figure 1�8. However, and this is fundamentally a topological

issue(Schwartz and Rojer, 1992, 1994), a low-pass�lter is su�cien t to producea pinwheel

pattern. Thus, by generating random unit vectors, and smoothing them via low-pass

Gaussian�ltering, extremely sharp pinwheel patterns can be produced. The broader the

FWHM of the Gaussian �lter, the more annihilation occurs, and the more shifting of

the resultant pinwheel centers occurs. An example of low-pass�ltering used to produced

pinwheelsis shown in Figure 1�7.

Obviously, Figure 1�7 suggeststhat various degreesof blurring, i.e., larger and larger

FWHM, will causeannihilation and movement of pinwheel centers. This issuehas been

quantitativ ely studied by Wood (2001), who determined the relationship of annihilation

and pinwheel center movement to the size (FWHM) of a Gaussiankernel used to smooth

random unit vectors. The results are shown in Figures 1�12 and 1�13.
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(a) f c = 0:05 (b) f c = 0:10 (c) f c = 0:15 (d) f c = 0:20

(e) � = 0:02 (f ) � = 0:04 (g) � = 0:09 (h) � = 0:12

(i) � = 0:03 (j) � = 0:06 (k) � = 0:15 (l) � = 0:18

(m) � = 22:5� (n) � = 55:0� (o) � = 77:5� (p) � = 90:0�

Figure 1�9: Di�eren t forms of ocular dominance columns can be synthe-
sizedfrom band-pass�ltered spatial white noise,after Rojer and Schwartz
(1990).
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(a) SpaceDomain (b) Frequency Domain

(c) 3D Plot

Figure 1�10: An isotropic band-pass�lter (center-surround) similar to the
usual di�erence of Gaussian(DOG) �lter of image processing.
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(a)

Figure 1�11: Raw data for pinwheel and ocular dominancecolumn imag-
ing (thanks to Gary Blasdel and Niall McLoughlin for giving us this data
example). On the left is the blood vesselimage. The next eight imagesare
orientation tuning imagesof the cortical responseto eight di�eren t orien-
tations between in the range [0; � ). On the right is the responseto broad
orientation band stimulation of only one eye, indicating the ocular domi-
nancecolumns of this region.
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Figure 1�12: The degreeof annihilation of pairs of left- and right-handed
pinwheels,under Gaussiansmoothing (Wood, 2001).
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Figure 1�13: Average movement of pinwheel centers under Gaussian
smoothing using various FWHM (Wood, 2001).
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1.8 Conclusion

The results of the precedingdiscussionprovide the following logical conclusions:

Blur exists. Sincea certain amount of blur (low-passcharacteristic) is unavoidable in any

experimental recording, there will be a corresponding amount of artifactual annihila-

tion and movement of pinwheel centers. There is no public account, at the moment,

for the magnitude of the FWHM expected for instrumental and experimental blur

in optical recording. The magnitude of this blur will determine whether someof the

major results in the �eld are acceptable,or needto be revised.

Pin wheel centers are displaced from their true positions. Sinceseveral of the ma-

jor experimental results outlined abovearecritically dependent on an accurateknowl-

edgeof pinwheel centers due to optical recording, it is critical to determine the error

of pinwheel location in optical recording.

Computer sim ulation determines the FWHM. Well understood methods basedon

Monte Carlo simulation of photon propagation in turbid (i.e., cortical) tissue are

su�cien t to provide a reliable estimate of the FWHM of photon scatter, and pho-

ton attenuation, in optical recording experiments. The FWHM will determine the

reliabilit y of someof the results summarizedearlier, and the photon attenuation will

determine the depth (and therefore, in part, the FWHM) of recording. Optical simu-

lation is su�cien t to determine the depth of �eld issuesassociated with the useof the

Macroscope, for a variety of focus depths and expected imaging depths. The latter

is, in part, determined by photon attenuation.

Additional sources of blur. As noted earlier, Womelsdorfet al. (2001) have shown that

signi�cant pinwheel center displacement and annihilation is causedby the common

practice of undersampling the orientation domain of the gratings used to stimulate

the cortex. This e�ect will be estimated by sampling theory. Other sourcesof blur

will also be brie
y discussed|for example, it will be shown that optical recording
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attenuation is such that only the top 100 microns of cortex, at 633nm, contributes

substantially to the signal. This is basically layer 1 of cortex, which consistsmainly

of white matter, much of which are the apical dendrites of deeper cortical pyramidal

cells. Theseapical dendrites are heavily overlapped, relative to the somafrom which

they project, and this is itself a form of low-pass�lter, or blur, which will be brie
y

discussed.

Cum ulativ e FWHM. The contributions to instrumental low-pass�ltering, outlined above,

will be combined in quadrature, under the assumptionthat they are independent and

uncorrelated, to provide the net FWHM expectedunder the experimental conditions

used in the full set of optical recording experiments used to measureV1 and V2

orientation maps, performed during the past �fteen years

In the following chapter, the Monte Carlo and optical simulation results will be de-

scribed.

In the �nal chapter of this thesis, a table of the net FWHM for a number of optical

recording experiments will be presented, and guidelineswill be suggestedfor correct useof

optical recording technology in situations whereaccuratemeasurement of pinwheelposition

is required.
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Chapter 2

Mon te Carlo Simulation

2.1 Metho dology

2.1.1 Goal of the Mo del

The point spread function (PSF) of an optical data collecting system is one of the most

succinct ways to de�ne the resolving abilit y of that system, and therefore it is a common

comparative measureof the veracity of imaging data recorded by the system (Born and

Wolf, 1999). The typically stated PSF for an instrument is usually measuredor calculated

for the transfer of point information from one plane (the object plane) to another plane

(the image,or focal, plane). When the object plane is embeddedin a transparent material,

such as air (which is transparent for visual wavelengths), the PSF function of the instru-

ment alone su�ces for a utile description of the inherent system error due to the limits

of the instrument. This error largely arises from the limiting e�ects of di�raction upon

the system. When the signal to be recorded is embedded in a turbid or di�usiv e material

such as biological tissue, the instrument's PSF for the image plane no longer adequately

describes the error of the system. The analysis of the total error, in the caseof di�usiv e

materials, becomesa three-dimensional problem that must include the contribution from

the environment as well as the instrument. With the imaging of optically turbid tissue, it

is appropriate to say that there are a \plane of focus" and an \ob ject volume". In fact,

for studies in tissue research, the environment often is the subject of interest, its study

the reason for which the data is being taking and thereby the intrinsic error due to the

intrinsic di�usion is di�cult to ignore or eradicate.

The PSF of a systemcan be, depending on its size,a sourceof severedistortion and/or
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artifact. Therefore, when imaging signals that are deeply embedded in noise, either tem-

poral or spatial, it is of critical utilit y to have an accurate analysis of the total system

PSF. The di�erence betweentemporal and spatial noiseand the important o�sho ot of this

di�erence will be discussedlater in this work. In turbid, di�usiv e tissue, the point-source

information is spreadout before it is imagedby the optical instrument. This spreadof the

signal due to the tissue optics must then be convolved with the three-dimensionalPSF of

the instrument as projected onto the imaging system'sdetector surface. This combination

will then provide a more accurate measureof the total system PSF. This resultant PSF

is valid for a single plane embeddedin the turbid, di�usiv e medium, imaged at a particu-

lar focal depth into the medium. Signal can be contributed simultaneously from di�eren t

depths in the cortical volume. Signals with smaller, therefore less distorting PSFs can

dominate the data, even when these signals are not intentionally focusedupon with the

imaging instrument. The goal of this work is to quantitativ ely analyze the total system

array of PSFs for the imaging of intrinsic, due to re
ectance changesin the tissue, optical

signals in cortical tissue.

It is the goal of this model to make an accurate assessment of the array of PSFs that

are manifested by optically imaging cortical tissue and their impact upon the analysis of

the signalsof interest. This will allow for discrimination concerning the results that have

beenor will be produced by this method.

The architecture of the complete modeling method for the total system PSF is as

follows:

A three-dimensionalMonte Carlo model of photon di�usion in cortical tissue is usedto

createa volume in which the relative probabilit y for a model photon to be at each position

in the volume is calculated. A steady-statemodel is usedfor this purpose. A probabilit y for

a photon to escape cortex from each position and enter the imaging systemis calculated for

each position in the volume and multiplied by the position probabilit y. A set of di�raction

limited PSFs for the imaging system is modeled for a set of depth slices in the cortical

volume. These two-dimensional di�ractiv e PSFs are convolved with depth volume slices
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from the Monte Carlo results and the results summedover the sampledcortical depths to

produce the �nal system PSF that is incident on the imaging system's detector. A more

detailed description of this processfollows.

2.2 Mon te Carlo Simulation

2.2.1 Mon te Carlo Background

The past �fteen yearshaveseenthe Monte Carlo method becomeestablishedasthe primary

method for modeling the behavior of light in biological tissue. This usagebegan with

the modeling of the interaction of laser light with tissue in medical applications for the

assessment of damage during ablations (Prahl et al., 1989). The term \Mon te Carlo"

refers to a technique �rst proposedby Metropolis and Ulam (Metropolis and Ulam, 1949)

to usea stochastic simulation to model physical processes.The approach that the Monte

Carlo method takes to modeling phenomenacan be understood as the inverseoperation

of gathering data and measuring the statistics of those data. The Monte Carlo method

usesthe statistical measuresof empirically gatheredvaluesto \generate" model datum and

through iteration a complete data set.

Many commonprobabilit y terms, which areusedin relation to the Monte Carlo method,

can be somewhatconfusing. The �rst of theseconfusing terms is \random variable." This

term has been used interchangeably with the terms, \sto chastic variable" and \chance

variable" in the statistical literature. A random variable is not a random number. A

random variable, or stochastic variable, is a variable for which it is known what values it

can take and the corresponding probabilities for that set of values. The formal di�erence

between a stochastic variable and a random variable is that a random variable cannot

depend on a previously generatedvalue whereasa stochastic variable may or may not do

so. Therefore, \sto chastic variable" is the more generalterm. This paper will usethe term

\sto chastic variable" insteadof \random variable" in order not to lead to confusionwith the

terms, \random number" and \pseudo-random number". These latter two terms shall be

de�ned shortly. The set of known valuesand corresponding probabilities that a stochastic
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variable can take is referred to as its \probabilit y distribution". The term, \probabilit y

distribution", leads to the next set of confounded terminologies. Both continuous and

discrete probabilit y distributions are described by their associated \probabilit y density

function". These functions are also referred to as the \distribution density function" and

erroneouslyas the \ probabilit y distribution function".

The true \probabilit y distribution function", alsoknown asthe \cumulativ edistribution

function", is the integral of the probabilit y density function. Many papers in the literature

further confound these terms by using the acronym, \PDF", without clarifying which

function is being referenced.This paper shall establishclarit y by using the terms, \densit y

function" for the function that describes the probabilit y distribution, and \cumulativ e

function" for its integral. The acronyms, DF and CF, respectively will be used for these

functions.

The Monte Carlo Method uses \random numbers", or more usually their approxi-

mates, \pseudo-random numbers", to generatevaluesfor stochastic variables by sampling

the probabilit y distribution of that stochastic variable. Random numbers are de�ned as

sequencesof valuesproducedby an unpredictable physical process.The consecutive values

of the sequencemust be independent of each other. It is an oneroustask to produce large

populations of true physically produced random numbers, and it is impossible to prove

any particular sequenceto be absolutely random. When the term \random" is usedalone,

there is the presumption of an underlying uniform distribution with the next value in the

sequenceequally likely to fall in any interval of equivalent extent. It is possibleto generate

sequencesof valuesthat very nearly sharethe properties of truly random sequences.These

sequencesare called, \pseudo-random." The pseudo-randomnumber generator utilized in

this work repeats itself every 21492 values(Moler, 1995). If a computer could produce one

billion (109) valuesper secondusing this algorithm, this repetition would take 10432 years.

Worst-caseestimatesof the ageof the universecurrently (ca. 2002)are of the order of some

fraction of 1010 years.

The generation of a datum point is accomplishedby the de�nition of the probabilit y
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density function's transformation rules. Transformation rules relate a facile, known prob-

abilit y density (almost always a uniform probabilit y density) to the probabilit y density of

the stochastic variable to be generated. These rules have someobvious properties. The

transformation must be \one-to-one". This meansthe transformation preservesthe equal-

it y of the probabilit y that the pseudo-random\seed" generatedfrom the uniform DF falls

in an interval of the uniform DF to the probabilit y that the generatedvariable falls into the

transformed interval of the generatedDF of the stochastic variable. The transform of the

generatedDF must also be a monotonic function of the uniform probabilit y distribution.

Again, this prevents multiple datum values being generated for a single pseudo-random

seedby ensuring the transform rule is invertible. To be truly invertible, the DF of the

stochastic variable must not remain equivalent to zeroover any interval. If the DF violates

this rule, invertibilit y can be rescuedby using a piece-wise,discontinuous function that

integrates over all valuesto one.

A generalizedmethod for generating a datum point from a stochastic variable's den-

sity function is to use the CFs of the uniform distribution and the stochastic variable to

implement the transform. Sampling the stochastic variable's DF is accomplishedas fol-

lows. A pseudo-randomnumber (rnd) is generated from a uniform distribution. Using

equation (2.1), the value for the CF of the stochastic variable can be taken directly from

this pseudo-randomnumber.

rnd = CFuniform =

rndZ

0

DFuniform (2.1)

By inverting the CF of the stochastic variable, a sampleof the stochastic variable can be

generated,yielding a datum point. For a graphic representation of this method of trans-

form, seeFigure 2�1. This transform rule is known as inverting the cumulative, and is used

throughout this Monte Carlo model (Sobol, 1994). The Monte Carlo method, as utilized

here,can be seenasa way to implement the physical modeling of di�eren t geometriesgiven

the samematerials. The properties utilized in this study wereempirically measuredfrom a
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Figure 2�1: Inversion of the Cumulativ e Distribution Function as the
Transformation Rule. (Seetext for full methodological details.)
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collimated line sourceand scatteredin a two-dimensionalplane using standard goniometric

techniques(Pickering et al., 1993; Jacqueset al., 1987). The simulation itself is modeling a

point sourcein a three-dimensionalvolume. Great care is necessarywhen making this shift

in geometry. The Monte Carlo method mandatesthe assumption that the bulk properties

of the material approximately scaledownward to the resolution of the simulation.

This will return the appropriate results on the scale of the original measurements,

though details of non-uniform behavior can be lost at smaller scales.

2.2.2 Mon te Carlo Metho dology

Optical Parameters

The optical parametersof this Monte Carlo model were empirically determined from mea-

surements made in actual biological tissue. The four fundamental parameters utilized

herein are the coe�cien t of absorption, � a, the coe�cien t of scatter, � s, the index of re-

fraction, n, and the anisotropy constant, g. Another common parameter, the coe�cien t of

transmission, � t , is the sum of the coe�cien ts of absorption and scatter. Theseparameters,

except for the index of refraction, are signi�cantly di�eren t in di�eren t typesof tissue, and

the model must account for this by using parameter valuesmeasuredempirically for gray

and white matter in the cerebral cortex.

Following are the values the Monte Carlo model used for these parameters (Cheong

et al., 1990):

Index of refraction in tissue,

n = 1:4

In gray matter at 633 nanometerswavelength,

� a = 2:7 cm� 1

� s = 354 cm� 1

g = 0:94

In white matter at 633 nanometerswavelength,

� a = 2:2 cm� 1
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� s = 532 cm� 1

g = 0:82

Mo ving the mo del photon

The basisof the Monte Carlo model of photon di�usion through tissue is the Monte Carlo

models of the late 1950'sthat were developed to study the behavior of neutrons in nuclear

reactor cores(Cashwell and Everett, 1959). Theseneutrons only underwent a few scatters

beforeabsorption and were thus capableof being calculated by the computers of the time.

It should be noted that the position update method in these early works can be subject

to coding errors due to small angle rounding approximations that are inevitable over the

many scatters of a model substrate material with a low coe�cien t of absorption.

Particle transport Monte Carlo models are often referred to as, \spin, hop and drop"

models(Johnsonand Umar, 1995; Wangand Jacques, 1995). This term refersto the chang-

ing of the direction of travel of the model photon, its distance of travel to the next inter-

action, and the potential for its absorption by the model tissue. The stochastic variables

neededto produce the values of direction change, step-sizeand probabilit y of absorption

are usually generatedby sampling their probabilit y distributions sequentially as needed.

This processcan be very slow computationally. The Monte Carlo algorithm developed for

this model generatesthesevaluescompletely in advancein order to allow for the calculation

of neededmemory allocation for the process. Generating storage arrays of values for the

stochastic variables in advancereversesthe order of generationfrom what is intuitiv e when

thinking about the physical underpinnings of the model. This and using individual model

photons per run, rather than weighted \packets" of model photons, also rids the model of

the arti�ce of needinga \roulette" process(Prahl et al., 1989) to extinguish model photons

with perceived abnormally long life-spans. The weighted packets also would unduly bias

the sphericalgeometryof the PSF model, whereasno geometricbias is intro ducedfor mod-

els with linear model photon sources,e.g., lasers, by using the weighted packet method.

The algorithm also di�ers in other fundamental aspects from its predecessors,which will
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be elaborated in the following sections.

Anatomical Parameters of Mo del

Thicknessof model cortex was set at 2,360microns from an experimental value for human

occipital cortex (Blink ov and Glezer, 1968). This value proved to make little di�erence

in the resulting PSFs due to the strong extinction of signal with depth of cortex. The

cortical depth of the model photon sourcewas run at depths ranging from one hundred

to 1000 microns at one hundred micron intervals. This range covered those values for

focal depth typically used by experimental researchers engagedin the optical imaging of

intrinsic signals (Grinvald et al., 1999). Model cortical curvature was zero, which is the

most conservative choice to minimize distortion. Though there were no limits on model

photon path length or distance of excursion, the volume for binning the model photon

positions was 4000microns squareand 500 to 1000microns deep,with each bin measuring

5 by 5 microns laterally by 50 microns deep.

Num ber of Mo del Photons

The �rst algorithmic parameter to be chosenis the number of model photons, n, to run

in the Monte Carlo simulation. This is somewhat arbitrary , but as a rule of thumb, the

simulation should run as few model photons as will achieve the accuracy that is desiredin

the results. It is fortunate that, as n becomesarbitrarily large, the accuracy of the result

approachesan asymptote and providesan optimal upper limit to n. The value of n, usedin

this model for each separaterun was onemillion (106), a point at which higher valuesof n

did not improve the smoothnessnor changethe value of the result. The model's algorithm

underwent several aspectsof optimization to achieve this volumeof model photons, without

compromising the validit y or increasing the number of ad hoc assumptionsof the model,

within the memory and speedconstraints of the physical computer. All calculations were

carried out on a Unisys Aquanta HR/6 server with six 333 MHz Pentium I I Overdrive

CPUs and one gigabyte of random accessmemory.
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Previous two and three-dimensionalparticle transport Monte Carlo models (Cashwell

and Everett, 1959; Prahl et al., 1989; Sobol, 1994; Wang and Jacques, 1995) proceeded

in the following manner when modeling a tra jectory for their model particles: First, the

algorithm generatesthe nth model particle's new direction (� , � ). It then calculates the

size of the model particle's step (� s) and then proceedsto move the model particle to

its new coordinates. Then, the algorithm checks if the model particle is absorbed. If the

model particle is not absorbed, the processis repeated with the n th particle and if model

particle is absorbed, a new particle, (n + 1), is launched.

The above processworks and is easily understood, but it requiresdynamic allocation of

a computer's memory resources,which slows down the computations immensely. The code

implemented in this work's Monte Carlo model pre-allocates memory resourceswhenever

possibleby creating arrays of the generatedvaluesfor stochastic variables.

Mo del Photon Path Length (Num ber of Steps)

The �rst of thesepre-allocated arrays to be generatedis a 2 � n matrix that contains the

values for the number of steps each model photon takes prior to being absorbed. This is

in contrast to checking at each step as to whether or not the model photon is absorbed.

The reason this is not a simple n-length vector is that the number of steps taken by a

model photon depends on whether the model photon is traversing gray or white matter.

The �rst row is the number of steps prior to absorption that the n model photons would

take traveling completely in gray matter, with the secondrow of the matrix dedicated to

the number of steps in white matter. How to determine the number of steps taken when

the model photon crossesand re-crossesthe interface boundary betweenthe gray and the

white matter will be covered shortly.
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The Num ber of Steps and Absorption

The number of stepseach nth model photon takesfrom launch to be absorbed is generated

by the following equation:

M (n) =
loge(� n )

loge

�
1 � ( � a

� a + � s
)
� (2.2)

where M (n) in equation (2.2) is the number of steps the model photon takes from launch

to absorption. Naturally the function, M , has a geometric distribution. The variable, � n ,

is a pseudo-randomnumber that is generatedfor each model photon.

Multiple Layers (Num ber of steps)

Equation (2.2) is only valid in a single layer of model tissue with homogeneousproperties.

The Monte Carlo model of photon di�usion developed herein implements two di�eren t

model neural layers, gray matter and white matter, and a third layer, air. This model

de�nes a photon that reaches the air layer to have \escaped" and this state ends the

algorithmic iteration for that model photon. The model photon's interactions with the

model air/cortex interface will be covered below. When the model photon traversesthe

boundary between gray matter and white matter the optical properties di�er and the

number of steps taken until absorption is altered. The algorithm for this Monte Carlo

model accounts for this in the way it increments the count of the number of steps that

have beentaken.

For each model photon, two valuesof the \n umber of steps" function, M , are generated

using the samepseudo-randomnumber, � n , but di�ering valuesfor the coe�cien ts of scatter

and absorption for the two layers, gray matter and white matter. The larger of the two

values for the function, M (� n ), is used as the maximum value for the iterativ e index

corresponding to the photon's number of steps. A separateincremented counter variable

to measurethe model photon's progress,steps, is updated during each iteration by adding

either,
�

M larger (� n )
M smaller (� n )

�
, or

�
M larger (� n )
M larger (� n )

�
= 1. The former ratio is added to steps when the
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model photon is in the layer with the smaller value of M (� n ), and the latter ratio is used

when the model photon is in the layer with the larger value of M (� n ). If the variable steps

becomeslarger than the value for M larger (� n ) the model photon, n, is terminated. This

method, developed for this model, conservesthe length of the lifetime of the model photon

as it crossesback and forth between layers. This method will easily extend to more than

two layers of tissue as empirical data about the tissue becomesavailable.

Allo cation of Memory for Position Matrix

For each position, at each step, a model photon takesin a trip through model cortex there

is a corresponding triplet of spatial position variables: x, y, and z. With knowledge of

the number of model photons, n, and the maximum number of steps each photon will

take we can allocate random accessmemory in advancein order to speedup computation.

This proved to not be a trivial matter and can in
uence whether or not a calculation

can even be done in a reasonableamount of time (t � one year). Therefore, memory

is allocated for a position matrix of size [TOTAL � 3], where TOTAL is calculated as

TOTAL =
�

nP

1
maxi (M ni (� n ))

�
+ n. The index i indicates which layer of model tissue

the number of stepshasbeencalculated for. The �nal n in the previous equation allocates

memory with which to store the origin triplet, (x; y; z) = (0; 0; 0), for each model photon.

Due to the model photon path often taking somewhatfewer stepsthan allocated, the code

is implemented with a method for truncating the position matrix after all model photons

have beenrun prior to further processing.

Distance and Direction for Mo ving the Mo del Photon

Launching or moving a model photon requiresa determination of two stochastic variables,

its future direction and the distance, or step-size,it will travel in that direction.

Direction of the Mo del Photon

As a model photon interacts with simulated tissue, at each interaction site the model

photon changesdirection. Scattering functions are measuredin actual tissue primarily by
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goniometry (Pickering et al., 1993; Jacqueset al., 1987). An empirical scattering function

is a collection of measurements of the di�erence between the intensity of the collimated

light incident on a pieceof tissue and the intensity transmitted by the tissue as a function

of the angle of scatter or the angle of incidence. Decrementing the thicknessof the tissue

allows an extrapolation to de�ne the scattering properties of an in�nitesimal thickness

increment of tissue. When using these measurements for three-dimensional simulations,

geometric corrections are required for the varying angular detector aperture with scatter

angle in directions both in the plane of the goniometerand perpendicular to it. Great care

must be taken in choosingexperimental valuesfor the optical property coe�cien ts asmany

authors either neglect completely or neglect to specify which corrections have or have not

beenapplied to their results.

For choosing a value of g, the anisotropy constant, a function of g must be chosento

�t the scattering data. Recall that g is used to parameterize the shape of this function.

This function is referred to as the phasefunction. The phasefunction utilized here is the

Henyey-Greensteinphase function (Henyey and Greenstein, 1941) and will be discussed

further later in the section on anisotropic scattering of the model photon. The empirically

measuredscattering function of light through tissue is well �t by a function combining

isotropic and anisotropic phasefunctions (Jacqueset al., 1987). The intuitiv e reasonfor

this is explained as follows. The tissue contains structures of many di�eren t sizesand

in turn, these structures are of varying size relative to the wavelength of light used by

the investigating instrument. The scattering behavior can be categorizedby the relative

magnitude of the wavelength of light being scattered and the physical component of the

structure o� which the light is scattering. Excluding objects of extremely high dielectric

constant that re
ect any incident light and starting with vanishingly small objects (radius

! 0) the scattered light is symmetric in intensity, which is de�ned as the square of the

electric �eld, in both the forward and backward (180� and 0 or 360� , respectively) direc-

tions. This is the realm of Rayleigh scattering. Polarization e�ects are not seenin turbid

tissue. As the radius of the interacting object increasesthe light is scattered forward to a
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Figure 2�2: Diagram of goniometric set-up from Jacqueset al. (1987). This
is their apparatus for measuringangular dependenceof light scattering by
tissue. A HeNelaser (A) deliversa collimated beamthrough a port window
(B) and strikesthe tissuesample(D) betweenglassslideswhich is held at the
center of a saline {�lled tank (C). Scattered light is collected by an optical
�b er bundle (E), which carries the collected light to a detector (photodiode
or photomultiplier) (F), which is digitally processedby a computer (G). A
motor driven arm (H) rotates the �b er optic collector bundle 360� around
the tissue sample. (Reprinted with permission.)
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larger and larger degree. This is known as the Mie e�ect (Born and Wolf, 1999). When

you have a scattering function for a substance,such astissue,which is constituted of struc-

tures or objects of many di�eren t sizesand scales,the resulting function will be a weighted

sum of the individual scattering e�ects of thesestructures and objects. It was found that

�tting the empirical scattering function of a tissue was well accomplishedby a linear com-

bination of isotropic and anisotropic components (Jacqueset al., 1987). A parameter, � ,

was assignedto weight the isotropic contribution in respect to the total phase function.

Then (1 � � ) is the weighting for the anisotropic contribution. In this present work, � , is

used to determine whether a particular scattering event of the model photon is isotropic

or anisotropic in behavior by pseudo-randomsampling of the zero ! one interval. This

method wastested by a separateMonte Carlo model to ensurethat it returned the original

phasefunction that had been �tted to the empirical scattering function. The value for �

used in the main Monte Carlo model is 0.1 (Jacqueset al., 1987).

Isotropic Scattering of the Mo del Photon

Direction of travel for the model photon is generatedin the spherical coordinates latitude

(or altitude), � , and longitude (or azimuth), � . Monte Carlo models from other papers

(Prahl et al., 1989; Wang and Jacques, 1995) generate the initial model photon launch

direction from a single sourcedirection and any subsequent isotropic scattering events by

the following pseudo-randomsampling equation:

cos� = 2� � 1 (2.3)

This work usesthe following equation for generating the longitude, � , for isotropic scat-

tering events:

� = 2� � (2.4)

The variable � in both equationsis a pseudo-randomnumber. This work usesa point source

rather than a collimated, linear sourceand the direction of the �rst step is generatedby

sampling theseisotropic density functions (2.3) and (2.4).
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Care must be taken when modeling scattering in three dimensions. If a pseudo-random

sampling of equation (2.3) is usedfor both longitude and latitude, there will be generated

an excessof scattersapproaching the 90� and 270� longitudes at the 90� latitude level. This

method alsowould produceonly a hemisphereof scatters. If equation (2.4) is usedfor both

latitude and longitude, a disproportionately larger number of scattering directions are gen-

erated asyou approach the polesof the previous direction of the model photon's travel and

180� away from that direction. Generating longitude for the anisotropic scattering events

also can su�er from this distortion and to compensateit is important to determine in ad-

vancewhether or not the experimenter normalized his curve �t of the empirical anisotropic

phasefunction. This vital information is nearly always omitted in published works.

Anisotrop y Scattering of the Mo del Photon (Hen yey-Greenstein)

The asymmetrical aspect of the model photon's scattering is based on an equation �rst

used to model scatter of the interstellar medium (Henyey and Greenstein, 1941)). The

Henyey-Greensteinphasefunction (2.5) is parameterized by the anisotropy coe�cien t, g.

A value for g of 0.94 for the gray matter of cortex and 0.82 for the white matter (Cheong

et al., 1990) has beenused in this work. The anisotropy coe�cien t can vary from a value

of one for complete forward scattering to zero for isotropic scatter to � 1 for complete

backward scattering.

pH G(cos� ) =
1

4�
1 � g2

(1 + g2 � 2g(cos� ))
3
2

(2.5)

The Monte Carlo sampling function for equation (2.5) was derived by Witt (1977) and

is as follows:

cos� =
1
2

"

1 + g2 �
�

1 � g2

1 � g + 2g�

� 2
#

(2.6)

Figure 2�3 shows the result given by the Henyey-Greensteinsampling function (2.6) for

1000scatters using a value of 0.5 for the anisotropy coe�cien t, g. The Henyey-Greenstein

function is interchangeably referred to in the literature as a phase function, a sampling

function or a generating function. This work will not usethe term generating function, to
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avoid confusionwith the formal useof this term from discretemathematics. The continuous

form, equation (2.5), will be referred to as the phasefunction, while equation (2.6) will be

referred to as the sampling function.

Figure 2�3: Sampling of the Henyey-Greensteinscattering function (2.6)
for a value of 0.5 for the anisotropy constant, g, for 1000 scatters. The
initial model photon direction is zero degrees.

Direction Up date for Mo del Photon Path

Each scattering event the model photon undergoes has a concomitant change in the di-

rection of the model photon's path. It is useful to note that the length of travel between

scattering events has no in
uence on the calculation of the change in direction, unless,of

course,the model photon hascrosseda boundary with an inherent changein the substrate's

properties. Using this property allows the updating of the direction of the model photon's

path separatelyfrom the cataloging of the path itself. The calculation of the current direc-
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tion requiresan iterativ e useof Euler angle rotations (Mortenson, 1995). Each new scatter

(� � ; � � ) has an associated rotation matrix:

M rot =

2

6
6
6
6
4

cos(� � ) cos(� � ) � cos(� � ) sin(� � ) sin(� � )

sin(� � ) cos(� � ) 0

� sin(� � ) cos(� � ) sin(� � ) sin(� � ) cos(� � )

3

7
7
7
7
5

(2.7)

The z-axis, which is also the model's optical axis, de�nes the (� = 0; � = 0) direction.

The cumulativ e rotation matrix, Cm
rot , is calculated iterativ ely by using matrix multiplica-

tion to produce the product of the new rotation matrix and the previous step's cumulativ e

rotation matrix:

Cm+1
rot = M m+1

rot Cm
rot (2.8)

For the �rst step of a model photon's path the cumulativ e rotation matrix, Cm
rot , is

initialized to be equal to the identit y matrix.

Mo del Photon Step Size

Early, and many current, Monte Carlo models simulating particle di�usion usea constant

step-size. This proceedsby launching the model particle, moving it a �nite, constant

distance � d, and checking by sampling of the appropriate probabilit y distribution whether

or not anything happens to it. If nothing happens, e.g., there is no scattering event or

absorption event, the model particle is moved another � d, and checked once more for

scattering or absorption. This proceedsuntil an event occurs, and then if the model

particle wasnot absorbed, its direction of scatter is determined and the processis repeated

until the model particle is absorbed.

The previous processof maintaining a constant step-size is computationally costly.

More recent Monte Carlo models of tissue optics (Prahl et al., 1989; Wang and Jacques,

1995) have utilized a method of generating a variable step-sizesampled from a stochastic

variable with the probabilit y density function of the free path of the model particle which

in this caseis a model photon traveling in a speci�ed simulated medium. The Monte Carlo
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model usedfor this simulation follows this example. The step-sizeis generatedby sampling

a density function that follows the exponential decay function known as the Beer-Lambert

or Beer'sLaw (Born and Wolf, 1999). The following sampling function (Witt , 1977) is used

to generate the model photon's step-size, � s, the distance traveled between consecutive

events:

� s =
loge(� )

(� a + � s)
(2.9)

In equation (2.9), � is a pseudo-randomnumber, and � a and � s, are the coe�cien ts of

absorption and scatter, respectively. The valuesfor thesetwo coe�cien ts are given in units

of inverse length. It should be noted that Beer's law breaks down in strongly absorbing

media and becomesnon-linear.

Mo ving the Mo del Photon

Now that the direction and the distance the model photon will be traveling are known

the vector for the move is calculated by multiplying the step-sizevector, [0; 0; � s], by the

cumulativ e direction matrix, Cm
rot . This yields a step vector, [� x; � y; � z], that is addedto

the previous position of the model photon's path to yield the current position, [xn ; yn ; zn ].

Escap e from Cortex

When a step is of su�cien t size to causethe model photon to cross the air/gra y matter

boundary the model photon either escapes the model cortex or is re
ected at the cortex/

air boundary. This type of re
ection is known as Fresnelre
ection (Born and Wolf, 1999).

The Fresnelre
ection coe�cien t, F (� i ), which is the fraction of light re
ected at an optical

interface, has the following form for unpolarized light:

F (� i ) =
1
2

�
sin2(� i � � t )
sin2(� i + � t )

+
tan2(� i � � t )
tan2(� i + � t )

�
(2.10)
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where � i is the angle of incidenceand � t is the angle of transmission acrossthe boundary.

The angle of transmission is determined using Snell's law:

� t = arcsin
�

ni sin � i

nt

�
(2.11)

where ni and nt are the indices of refraction for the layer containing the incident ray and

the layer containing the transmitted ray, respectively.

The Fresnelre
ection coe�cien t rangesin value from 0 to 1, and this range is sampled

by a pseudo-randomnumber, � . If � � F (� i ), then the model photon is transmitted and

if it is at the gray matter/ air boundary, escapestissue. If, on the other hand, � < F (� i ),

the photon is re
ected at the boundary.

Mo del Photon Position Densit y after Di�usion through Cortical Volume

Completing the above calculations for n model photons (t ypically, n = 1,000,000),yields

a three-dimensional distribution of scattering event positions, seeFigure 2�4. The �nal

position of each model photon path is ignored if it was the result of an absorption event

(or capture), and included if it was the result of the model photon escapingtissue. At each

scattering event position, there is an associated probabilit y that model photons from this

position will contribute to the �nal image. This probabilit y is the product of two separate

components: one, the probabilit y that model photon's next step will be large enough for

it to escape cortical tissue allowing it a chance to enter the imaging system; two, that

the model photon will be scattered in a direction that would allow it to enter the imaging

systemsaperture. The mean free path of the photon in air is larger than the scaleof the

entire physical imaging system, allowing scatter in the air to be disregarded.
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Figure 2�4: Plot of onehundred model photon paths in cortical tissue. This �gure is an orthographic projection
along the x-axis of the three-dimensionalmodel photon paths. Cortical gray matter is one millimeter thick and
the model photon source is 500 microns below the gray matter/air interface. Note both the change in path
structure as the model photons cross and re-cross the gray matter/white matter boundary and that Fresnel
re
ection can be observed at the gray matter/air interface.
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In tegration of the Scattering Function over the Ap erture Cone

In order to contribute to the imaging system'spoint-spread function, a model photon must

be headed in a direction, just prior to its escape from model cortical tissue, which will

send it into the aperture of the imaging system. The aperture, in this case,is created by

the smallest optical stop in the optical system being virtually projected back through the

systemto the �rst optical surface. The aperture, in combination with the current position

of the model photon, forms the aperture cone. The integral of the scattering phasefunction

over the integration limits of the aperture cone is calculated using a gnomonic projection

(Coxeter, 1989). Values for the scattering probabilit y density function are calculated for

discretevaluesof the latitude and the longitude, [(� i � � n� 1); (� j � � n� 1)], from a position,

(xn ; yn ; zn ), where(� n;1; � n� 1) is the previousdirection of scatter. The gnomonicprojection

transform can only transform slightly lessthan one hemisphereat a time as nodal points

transform to the samepoint on the projection plane. The geometry of the aperture cone

allows for only directions with a positivez component, de�ned asparallel to the optical axis,

to be considered. The values are calculated using the Henyey-Greensteinphasefunction,

equation (2.5) summedwith a uniformly distributed value of � (
R

� ;�
PH G) to account for the

isotropic scattering component. The sum of valuesof this function over all � and � is then

renormalized to a value of one. The parameters, i and j , determine the �neness of the

grain of the calculation. The spherical coordinates of the scattering probabilit y density

function are transformed by a gnomonic projection, equations (2.12) and (2.13), onto the

plane that contains the aperture of the imaging system:

x i;j =
�
(zAPER TURE � zn )

�
cos� i sin(� j � � n� 1)

sin � n� 1 sin � i + cos� n� 1 cos� i cos(� j � � n� 1)

��
+ xn (2.12)

yi;j =
�
(zAPER TURE � zn )

�
cos� n� 1 sin � i � sin � n� 1 cos� i cos(� j � � n� 1)
sin � n� 1 sin � i + cos� n� 1 cos� i cos(� j � � n� 1)

��
+ yn (2.13)
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The probabilit y that the subsequent scatter of a model photon at position, (xn ; yn ; zn ), will

be in a direction that will allow it to successfullypassthrough the imaging system'saperture

is the sum of all the associated probabilit y density values for transformed coordinates

(x i;j ; yi;j ) that satisfy the following equation for an imaging system aperture with radius,

R : R �
p

(x i;j � xn )2 + (yi;j � yn )2. Thus, the probabilit y of a photon leaving position,

(xn ; yn ; zn ), from direction, (� n� 1; � n� 1), is:

Pdirection =
X

R� (( x i;j � xn )2+( yi;j � yn )2 )0:5

p((1 � � )H G+( � )I SO) ([( � i � � n� 1); (� j � � n� 1)]) (2.14)

The gnomonic projection of the scattering phase function onto the imaging system's

aperture plane is diagrammatically represented in Figure 2�5. The resolution of the scatter-

ing phasefunction as shown in Figure 2�5 is much, much lower than usedfor this model's

actual calculations and therefore might be interpreted as not accurately projecting the

transform. It should be noted that this calculation is only performed for the positions of

the model photons that are in the �eld of view of the model imaging system as a method

of conservingcomputational resources.
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Figure 2�5: Gnomonic Projection of Scattering Phase Function to Aperture Plane. The scattering phase
function is centered at the model photon's current position and oriented in the direction of the previous scatter.
The gnomonic projection is then used to project the scattering phase function onto the aperture plane. The
valuesof the scattering phasefunction that are projected within the areathat de�nes the optical imaging systems
aperture are summed to give the probabilit y of the model photon's next scatter entering the optical imaging
system. These successfulvalues of the scattering phasefunction are indicated in the �gure by asterisks in the
aperture plane. Model photon positions outside the optical imaging system's �eld of view are excludedfrom the
calculations to conserve computational resources.
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Probabilit y Con tribution from Depth of Mo del Photon in Cortical Tissue

The distance necessaryfor the model photon to escape was computed by calculating the

distancesfrom the model photon's position, (xn ; yn ; zn ), to the model cortical surfacealong

the directions that resulted from the gnomonic transform that successfullyfell inside the

model imaging systemsaperture. The coordinate, zas, is the distancealong the optical axis

from the model photon sourceto the center of the aperture. The mean of thesecalculated

distances,D =
�
�
�
�

dC S
dAP

((x i;j ; yi;j ; zas) � (xn ; yn ; zn ))
� �

�
� , with dCS the normal distance to the

model cortical surfaceand dAP the normal distance to the aperture plane from the model

photon position, is used in another application of the Beer-Lambert law to calculate the

contribution to the probabilit y

Pescape = exp(� (� a + � s)D ) (2.15)

Final Binning of Poin t Spread Function due to Di�usion of Mo del Photon Poin t

Source

The last step in computing the contribution of di�usion by turbid cortical tissue to the

total system point spread function is the binning of the products of the direction and

depth contributions to the probabilit y distribution,
Pdirection � Pescap eP

bin
. The bin size used in

this model was 5 by 5 by 50 (depth) microns. When the entire volume has been binned,

the result is the point spreadfunction due to photon di�usion in tissue. The contribution

to the total instrument point spreadfunction due to di�raction by the imaging optics must

now be calculated and then convolved with the di�usiv e point spreadfunction to give the

total system error.

Instrumen t Poin t Spread Functions (W ave Optics)

Having calculated with a Monte Carlo model the spreadof the signal due to the di�usion

of light by the turbid cortical tissue, the contribution to the total error from the optical

system will now be addressed. The contribution to the total system error by the opti-

cal system has one absolutely inherent component, the di�raction point spread function.
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Other sourcesof instrumental error such as misalignment, deviations from symmetry of

relay components, di�erences in the actual properties of the constituent optical glasses

from their speci�cation, and any other manufacturing errors are ignored in the present

model. Assuming that the manufacturing processis ideal is unrealistic, but it is a very

conservative approach with which to construct the model, yielding the absolute smallest

possibledi�raction point spreadfunctions as an asymptote to what is actually obtainable

in practice. The calculation of di�raction point spread functions belongs to the disci-

pline of wave optics and physics. Standard ray trace methods for geometrical optics treat

the light traveling through the instrument as particles and do not addressthe e�ects of

considering the wave aspects of the photon. Most physical models of di�ractiv e optics

require the electric �eld to be calculated at every intervening element in the optical sys-

tem (Wilhelm , 2001). The wave optics method of Gaussianbeam decomposition, which

was suggestedby the work of Arnaud and functionally developed much later by Greynolds

(Arnaud, 1970; Greynolds, 1986b,a), is unique in that it only requires the calculation of

the input and output �elds. The total input beam �eld is decomposed into many con-

stituent smaller Gaussianbeams(2�4). These fundamental components can be utilized in

this fashion becausethey are more preciselyastigmatic GaussianTEM 00 beams,which are

a particular solution to the paraxial Helmholtz equation (Wilhelm , 2001). Figure 2�6 is a

two-dimensional representation of a three-dimensionalprocessthat was used in modeling

the optical system for this work's calculations.

Propagation of Gaussian Beams by Geometrical Optics Ray Tracing

The propagation of each component Gaussian beam can be modeled by �v e individual

geometric rays traversing the model optical system. These �v e rays when geometrically

ray-traced through the model optical imaging system carry enough information to cor-

rectly reconstruct the transformed astigmatic Gaussian component beams in the image

plane. The rays are a baseray, two waist rays and two divergencerays. The relationship of

these �v e geometric rays to the input and output astigmatic component Gaussianbeams
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Figure 2�6: Two-dimensional representation of the decomposition of a
three-dimensionalplanar wavefront into its component Gaussianbeams.
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is shown in Figure 2�7. This �gure is from (Wilhelm , 2001). The rays are propagated

in the samemanner as the normal in�nite wavelength approximation rays of normal ge-

ometric ray tracing and then allow reconstruction of the �eld at the image plane (or any

other intermediate plane). The baseray carries the information about the center of the

beam through the imaging system. The waist rays carry full-width half maximum level of

the initial Gaussianbeam, which is the real part of the solution to the complex paraxial

Helmholtz equation. The imaginary part of this solution is calculated using the divergence

rays, which divergefrom the baserays and waist rays at an angle of tan � i = �= 4wi . Here

w is the radius of the waist rays. The reconstructed real and imaginary two-dimensional

Gaussiancurves are then convolved to produce the �nal optically transformed Gaussian

beam. Each optically transformed component Gaussianbeam is then added to the other

component Gaussianbeamsto producethe optically transformed wavefront, completewith

all di�raction e�ects calculated in the result. This work decomposedthe input wavefront

to the optical imaging system into a 201 by 201 grid of component Gaussianbeams. De-

compositions with a greater number of beamswerecomputed, but they provided no change

in the accuracyor detail of the output wavefront.
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Figure 2�7: Relationship of constituent geometric rays to component Gaussian beam. This �gure is from
(Wilhelm , 2001). The rays are propagated in the samemanner as the standard geometrical ray tracing method.
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2.2.3 Optical sim ulation of the Macroscop e

Adv anced System Analysis Programming Language (ASAP)

All wave optics calculations were calculated using Breault Research Organization's Ad-

vancedSystemAnalysis Programming Language. This software and training in its usewas

generouslyprovided by Breault Research1. Alan Greynolds developed this software and

the software code includes macros for GaussianBeam Decomposition methods.

The Macroscop e

The most common and best de�ned of the imaging systemsusedin the optical imaging of

intrinsic, or contrast enhancedby dye injection, signalsis the macroscope (Grinvald et al.,

1999). Designof the macroscope is that of two single lens re
ex cameralensesfacedfront-

to-front giving a wide �eld of view and collecting considerablymore light than a standard

microscope objective (Figure 2�6). This design, especially when using two lensesof the

samemodel and manufacturer, can be of relatively low distortion.

Most single lens re
ex camera lensesof high quality are of a doublegaussdesign (see

Smith, 1992). The layout of the model macroscope used to compute the di�raction point

spread function contributions to the system error is a symmetric, 1 : 1, relay system

consistingof two identical seven element double gausssinglelensre
ex cameralenssystems

arranged front to front (Grinvald et al., 1999). Both lensesare of 50-millimeter focal

length and are in closemechanical proximit y in order to minimize di�ractiv e error in the

image plane. The particular variant of the seven element double gaussdesignusedin this

model was chosen for its speci�cation and performance similarities to the 50 millimeter

Pentax SMCP-FA f/1.4 lens as this lens type and manufacturer are often cited as being

implemented by experimenters doing optical imaging of cortical tissue. The exact lens

design used for this work's model is a design by Yoshisato Fujioka, United States Patent

#4443070 (Smith, 1992).

1Breault Research Organization 6400 East Grant Road Suite 350 Tucson Arizona 85715.
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Figure 2�8: MacroscopeLensLayout. Designof the Macroscope (Grinvald
et al., 1999) is that of two single lens re
ex camera lensesfaced front to
front giving a wide �eld of view and collecting considerablymore light than
a standard microscope objective. The line on the far right is the plane of
the detector element.
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Mo del Detector Placemen t and Best Focus

The placements of the object plane and the image,or detector, plane relative to the model

macroscope lens system were initially set at the back focal distances for each individual

camera lens. This is an appropriate �rst approximation when both individual camera

lensesthat composethe macroscope are to be focusedat in�nit y when facing each other.

The model detector plane was then moved to obtain best focus for the system. This was

done iterativ ely to yield the smallest possiblepoint spread function. Image depth in the

model tissuewasbrought to the object focal planeby moving the model macroscope system

relative to the model tissue. This procedurereplicatesthe laboratory processof focusingon

the surfaceof the cortical tissueand then preciselymoving the macroscope systemforward

the desired distance to acquire signal at the pre-designateddepth. A �nal re�nement to

the model wasto include a slab of material representing the volume of cortex being imaged

by the macroscope. This model tissue had an index of refraction equal to 1.4, and was

placed at an appropriate variable o�set distance relative to the object focal plane to take

account of the foreshortening of the image distance by cortical tissue.

Poin t Spread Functions of the Macroscop e at Varied Tissue Depths

The GaussianBeamDecomposition method is usedto calculate the di�raction point spread

function for the optical imaging for several depths including the object plane and several

planesabove and below the object plane out of focus. It is necessaryto calculate the out of

focus planesas the contributions to the total point spreadfunction comesfrom the entire

volume of the tissue under observation. This model calculated the di�raction point spread

function for no lessthan twenty object planes over a millimeters depth of model cortical

tissue and as many as forty object planesover two millimeters. A sampledi�raction point

spread function as calculated by the GaussianBeam Decomposition method is shown in

Figure 2�9. This particular example calculation which was performed for the macroscope

is not quite at the focus. It should be noted that the �neness, or the size and number

of Gaussian beams, of the decomposition of the input optical wavefront was chosen by
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increasing the resolution of the simulation until no additional spatially stable features

emergedin the �nal result. The complete di�raction point spreadfunctions will be shown

in the Results section of this work.

Figure 2�9: An exampleof a Di�raction Point Spreadfunction calculated
by the GaussianBeam Decomposition Method.

Total Poin t Spread Functions

The desired result, which is the complete system (tissue under observation and optical

imaging components) point spread function, inclusive of tissue optical and di�raction ef-

fects is calculated from the Monte Carlo di�usion model result and the Gaussian Beam

Decomposition and ray-trace result. The Monte Carlo Tissue Optics di�usion result is

decomposedinto planes parallel to the model tissue surface. These planes are then indi-

vidually convolved with the di�raction point spread functions for the appropriate depths
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of tissue. Summing theseindividual convolution results along the optical axis, which is the

axis where the model cortical tissuedepth is de�ned, yields the total point spreadfunction

of the original point in the object plane.

2.3 Results

The results from the four computational components for this model are presented here

along with their combined results yielding the set of the total tissue-instrument point

spreadfunctions for varying signal depths and focal depths in the model cortical tissue.

2.3.1 Mon te Carlo Mo del Photon Tissue Di�usion and Transp ort Results

The Monte Carlo simulation, for each origin of signal depth in cortex examined, launched

betweenone and ten million model photons, allowed them to di�use through a simulated

layered cortical tissue and tracked the model photons' paths until their absorption or

escape from the model tissue. Two further Monte Carlo calculations were then performed.

First, for each position in the model cortical volume that the model photons attained,

the probabilit y that the next step which the model photon would take would be in a

direction which would allow it to enter the imaging instrument through the instrument's

aperture was computed. Secondly, the probabilit y that a model photon would escape from

the model cortical tissue from its current position was calculated. These three results

which were calculated for each model photon position: (1) the probabilit y of attaining a

particular spatial position, (2) the probabilit y of escape from tissue from that position,

and (3) the probabilit y of the direction of travel allowing the model photon to enter the

imaging system,were then multiplied to yield the probabilit y that the model photon with

that position and coming from that direction could contribute to the imageon the imaging

instrument's detector. The results of these calculations are then binned to provide a

direction independent probabilit y distribution. The bins are �v e microns squareorthogonal

to optical axis and 50microns in depth along the optical axis. The result for a model photon

source500 microns deepin cortical tissue is mapped in Figure 2�10.
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It should be noted that the range of the probabilit y function in Figure 2�10 is plotted

as a logarithm, indicating just how disproportionately large the contribution from the

shallower (less than 200 microns) cortical depths the majorit y of the measured signal

reaching the imaging instrument's detector is. This result o�ers the insight that regardless

of how deeply an experiment plunges the prime focus of his instrument into tissue, the

signal being measuredis originating from the shallower depths. Indeed, as will be shown

later in this work with demonstration of the total tissue-instrument point spreadfunctions,

placing the prime focus of the instrument deeper in tissue only has the e�ect of increasing

distortion of the signal from the more super�cial layers of cortical tissue.

Figure 2�10: Monte Carlo result for the probabilit y of a model photon
entering the optical systemfrom a 500micron depth in cortical tissue. This
result is the multiplicativ e product of three separateprobabilities: (1) the
probabilit y that a model photon will reach a certain binned position, X
= (x; y; z), in the cortical volume, (2) the probabilit y that a model photon
can escape tissue from position X, and (3) the probabilit y that a model
photon will enter the aperture coneof the imaging instrument.
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The �rst wave optics calculation that was necessaryto perform was to �nd the best

focus for the model instrument, in this casethe Macroscope, for placement of the model

instrument's detector plane with the least amount of resultant distortion. This was per-

formed iterativ ely, beginning with the object plane at a distance equivalent to the back

focus speci�cation for the front single lens re
ex (SLR) lens component of the Macroscope

(recall that the front SLR lens is utilized with what is normally its exit aperture facing

the object of interest). The distance from the object plane to the front surfaceof the �rst

optical element was varied until the di�raction point spreadfunction was minimized. This

�xed both the distance to the object plane and the image (detector) plane. The resulting

instrument point spread function due to di�raction is shown graphically in Figure 2�11.

This �gure is a two-dimensional slice through the calculated radially symmetric three-

dimensional di�raction point spread function. It is important for interpreting the �nal

qualitativ e results of the model that there are two focal points within the approximately

150 micron focal depth. This is most easily noted by utilizing the contour plot on the

bottom of the �gure. The model instrument's detector (image plane) was placed at the

�rst of these foci, as the actual experimental protocol used in optical imaging (Grinvald

et al., 1999) would result in this choice.
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Figure 2�11: Wave optics calculation result for the three-dimensional(radially symmetric) point spreadfunction
(PSF) due to di�raction. Figure is intensity pro�le of a slice through the PSF. This data was utilized to locate
the best focus in order to �x the position of the plane of the detector in the model instrument (Macroscope).
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Once the distances, from the frontal object plane to the �rst optical surface and to

the detector (image) plane, are �xed, the di�raction point spread functions from various

depths in the cortical volume to the detector plane can be calculated. Figure 2�12 is the

wave optics calculation for model instrument (Macroscope) over a range of cortical depths

on the optical axis. These are the point spread functions for points of light originating

from a set of positions above and below the position for which the focal resolution is

optimal, or best focus. With the imaging of optical tissue, it is appropriate to say that

there are a \plane of focus" and an \ob ject volume", as opposed to merely an \ob ject

plane". This set of point spreadfunctions was computed for on-axis (optical axis of model

instrument) model photon origin positions at 50 micron intervals of distance from the best

focus position. Each individual point spreadfunction image is 600 microns square.
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Figure 2�12: Wave optics calculation for model instrument (Macroscope) over a rangeof cortical depths on the
optical axis. These are the point spread functions (PSFs) of points of light originating from a set of positions
above and below the position for which the focal resolution is optimal, or best focus. With the imaging of
optical tissue, it is appropriate to say that there are a \plane of focus" and an \ob ject volume", as opposedto
an \ob ject plane". This set of PSFs was computed for on-axis (optical axis of model instrument) model photon
origin positions at 50 micron intervals of distance from the best focus position. Each individual PSF image is
600 microns square,with the best focus PSF being the rightmost image in the secondrow from the top.
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2.3.2 Com bining photon propagation with optics sim ulation

The set of point spread functions can now be convolved with the Monte Carlo photon

probabilit y result from the previoussectionto yield the �nal tissue-instrument point spread

function Figure 2�13.

Several qualitativ e observations of these results can now be made. For depths of sig-

nal lessthan 400 microns, the point spreadfunction actually improveswhen going deeper

from 100 micron focal depth to the 200 micron focal depth. This can be understood as a

combination of two e�ects. First, the best focusof the instrument (macroscope) is towards

the leading end of the section of the di�raction point spread function where the function

maintains a shape that is a small deviance from the curve at best focus. This approxi-

mately cylindrical in crosssectionpart of the function is called the depthof focus (not to be

confusedwith focal depth) and for this particular instrument model is approximately 150

to 200 microns long. It is useful conceptually to think of the three-dimensionaldi�raction

point spreadfunction as two point to point cones,or funnels, connectedby this cylindrical

depth of focus (Seecontour plot on bottom of Figure 2�11). Second,the e�ect also quali-

tativ ely dependson the strong exponential fallo� of the probabilit y for the model photons

to escape tissue with increasingcortical depth. As we move the best focus deeper into the

tissue (it starts on the cortical surface due to experimental protocol depth calibration),

which initially meansthe convolution of the function and the tissue spread function gets

better as the depth of focus section moves into the tissue volume and the leading coneof

the point spreadfunction is diminished in e�ect as it enters the fallo� region. Then moving

the best focus further into the cortical tissue volume, the upper coneenters and the depth

of focus enters the fallo� region causing a worsening of the total tissue-instrument point

spreadfunction.

The previous combination of e�ects also causesthe appearanceof an annular point

spreadfunction when the signal sourceis at a shallow depth in the cortical tissue and the

focal depth is deep. This interesting qualitativ e touchstone will be seenin the discussion

of empirical data to be discussedbelow.
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Figure 2�13: Total point spread functions at various signal and focal
depths for the instrument (Macroscope) imaging cortical tissue. The depth
of signal (model photon origin position) increasesin value as the �gure
is read from top to bottom, while the depth of focus increasesfrom left
to right. The numbers above the curves are the full-width half-maximum
(FWHM) parameter of the curves.
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Figure 2�14: Varying the coe�cien t of absorption, � a, in gray matter.
There is debate concerning the value of � a, basedon anecdotal evidence.
It has been mainted by certain researchers (Cheong et al., 1990) that the
value used for this model could be as much as an order of magnitude too
large. Therefore, simulations were run to test the e�ect of a rangeof values
of � a on the computational results. A value for � a of 0:2 cm� 1 was used
to contrast with the results from using the published values available for
� a of 2:7 cm� 1 (Cheong et al., 1990). The resulting deviations are shown
in this �gure. These di�erences are not particularly signi�cant due to the
dominanceof the coe�cien t of scatter in the tissue being modeled in these
simulations.
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The �nal crucial qualitativ e observation concerningthe results of the total tissue-optics

point spread function is the decreaseof in
uence by focal depth on the full-width half-

maximum (FWHM) measureof the point spreadfunction. At a signal sourcedepth of 100

microns in cortical tissue, the changein the point spreadfunctions FWHM measureis over

500 percent as the focal depth increasesfrom 200 to 500 microns. This is contrasted with

an increaseby a factor of merely twelve percent over the samechangein focal depth for a

signal sourcedepth of 500 microns.

All three of these qualitativ e aspects of the computational model are observed in an

empirical study to be discussedlater of a slightly di�eren t con�guration of the macroscope

system.

One of the empirically measuredoptical parameter values used in this computational

model hasbeenbrought into question in discussionof this work with other researchers. The

coe�cien t of absorption (� a) of gray matter used for this model is a value from (Cheong

et al., 1990) and has the value of 2:7 cm� 1 (inversecentimeters). The debate concerning

the value of � a is based on anecdotal evidence and personal observation. It has been

maintained by certain researchers that the value used for this model could be as much as

an order of magnitude too large. Simulations were run to test the e�ect of the value of

� a on the computational results. A value of � a of 0:2 cm� 1 was usedto contrast with the

results from using the reported a value of 2:7 cm� 1. The largest resulting deviations are

shown in Figure 2�14. The rather small di�erences, a maximum of three percent, are due

to the dominanceof the coe�cien t of scatter over the coe�cien t of absorption in cortical

tissues.

Comparison of Outside Empirical Result with Mo del Predictions

Grinvald et al. (1999) cites empirical work by Kam et al. (2002) that is in qualitativ e agree-

ment with the resultsobtained by the predictions of the total tissue-instrument point spread

functions of this papersmodel. Kam et al. (2002) �lled a glass(borosilicate) micro-capillary

pipette with 
uorescent �fteen micron diameter beadsin a matrix of cyanoacrylate. The
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micro-capillary pipette wasthen advancedobliquely into the animal modelscortex and the


uorescent beadsimaged by a macroscope comprised of a pair of single lens re
ex lenses

mated front-to-fron t to yield a magni�cation of 2:7� . The model macroscope of this papers

work is a relay systemof 1 : 1� magni�cation. Quantitativ ely, the resulting FWHM values

of the point spread functions are somewhat larger than the predictions made here. This

di�erence can easily be accounted for by several conservative choicesmade by the current

model.

Someof theseconservative measuresare as follows:

1. The model macroscope is ideal in that it has no manufacturing errors, it is perfectly

optically symmetric, allowing near-perfect correction of optical distortion, and it has

beenidealized to a degreeimpossiblewith a real instrument.

2. The macroscope usedby Kam et al. (2002) is a combination of two single lens re
ex

elements of di�ering focal lengths, while the model macroscope component elements

have equal focal lengths.

3. The di�raction point spread utilized over the entire object volume in the model

are from the on-axis results, even for the o�-axis convolution. This yields no coma

distortion in the di�raction point spreadfunction and greatly lessensthe imageserror.

4. The model cortical surfaceand the interface between the gray matter layer and the

white matter layer have zero curvature. This lowers lateral distortion of the cortical

laminar functional maps.

5. The point source in (Kam et al., 2002) is encasedin materials di�eren t in optical

properties from the surrounding tissue.

6. There is no simulated vascular structure in this works model of the cortical tissue

and the model cortex is implemented as uniform in structure down to the scaleof a

model photon step size.
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Despite these numerous di�culties, there are critical similarities in the two piecesof

work, which validates the comparisonof the their respectiveresults. Both the current model

and the instrument in (Kam et al., 2002) use a monochromatic light for the illumination

source. A serendipitous similarit y is that by using a 
uorescent bead as a point source

(Kam et al., 2002) isolates the in
uence of the illumination sourceon the signal.
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Chapter 3

Conclusion

3.1 Corrections to rep orted values of spatial resolution of in trinsic opti-
cal imaging

As outlined in the �rst Chapter of this thesis, a principal goal of this work is to determine

a lower bound on the expected spatial error linked to instrumental low-pass �ltering of

intrinsic optical signals and the consequencesof this error analysis to current models of

cortical functional architecture.

In Chapter 1, a review of the literature of orientation mapping and functional archi-

tecture in V1 was presented, along with a demonstration that orientation maps have a

sensitivity to spatial �ltering that is di�eren t than that of scalar-valued images|the sin-

gularities associated with orientation maps are systematically displacedfrom their correct

positions, and not merely broadenedin width, as would be the casefor a scalar �eld.

In Chapter 2, a Monte Carlo simulation of photon scatter in cortical tissue was pre-

sented. Published valuesof photon scatter and absorption at 633 nm, a (red) wavelength

in the range of common optical recording experiments, were used to estimate the prob-

abilit y density of scattered photons in cortical tissue. In addition, a commercial optical

CAD system was usedto model di�ractiv e point-spread functions for the macroscope sys-

tem that is widely used by experimentalists. Then, the joint e�ect of the optical system

and the photon scatter was used to compute a net point spread function at the level of

the video detector for a matrix of choicesof focal depth and \ob ject" depth. The object

corresponding to a point-spread function is a point re
ectance (or a delta function) located

at a single depth in cortex. It is important to emphasizethat the scattered photons from

such a delta function will propagate out to all levels of cortex, with probabilities that are
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determined by the Monte Carlo simulation. However, only photons which are relatively

near the surfacecan exit into free spacewithout further scatter, and only a subsetof those

photons enter the optical system, provided that they pass through the optical aperture.

The physical systemmodeledin the Monte Carlo and wave optics simulation is summarized

in Figure 3�1.

PSfrag replacements

(r; z)

(r 0; z0)

(r ` ; z` )Focal Plane

e� � a (z0 � z)

1 � e� (� a + � s )( z0 � z0)

� (r ; z)

R
dr � (r; z)G(r; z; r 0; z0)

z0

RR
dr0dz0O(r 0; z0; r ` ; z` )[1 � e� (� a + � s )( z0 � z0) ]

Figure 3�1: Schematic representation of the Monte Carlo and wave
optics simulation for a single delta function re
ectance source � (r; z)
e� (� a + � s )( z0 � z0) represents the optical albedo|the joint probabilit y of a
scatter or absorption event given scattering coe�cien t � s and absorption
coe�cien t � a in distance z0 � z0. G(r; z; r 0; z0) is the Green's Function
(propagator) that describesphoton translation in the tissue. (r ` ; z` ) repre-
sent detector plane coordinates (cylindrical coordinates used throughout).
O(r 0; z0; r ; z) represents the optical transfer function for a given choice of
focal plane.

The intensity of photons at the detector, I (r ` ; z` ), is given by convolution of the photon

and optical propagators. The full processof Monte Carlo photon propagation and optical
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imaging is given by

I (r ` ; z` ) =
ZZ

dr0dz0 O(r 0; z0; r ` ; z` ) [1 � e� (� a � � s )( z0 � z0) ]
Z

dz
Z

dr e� � a (z0 � z) � (r ; z) G(r; z; r 0; z0) (3.1)

wherethe probabilit y of a photon at a given level escapingthe cortex is 1� e� (� a � � s )( z0 � z0) .

The present chapter extendstheseresults to considerthe modeling of a spatial distribu-

tion of cortical activit y. In general, this could be done by convolution of the point-spread

functions derived in Chapter 2 with the presumeddistribution of cortical re
ectance. How-

ever, in the present context the assumption will be made that the cortex is strictly colum-

nar. In other words, it will be assumedthat there is a line-source, i.e., a vertical column of

delta functions which are identical. Each part of this line-sourcewill contribute scattered

photons, and the net result of the entire processis consideredto be the imageddata at the

detector. One way of thinking about this is to imagine a summation of the point-spread

function corresponding to each delta function sourceat the detector|this is a sum, rather

than a convolution, since this processrepresents a physical summation of incoherent pho-

ton intensity, not a probabilit y summation of independent events. We refer to the summed

PSF's as Columnar Spread Functions, or CSF's.

Researchers that make use of intrinsic optical recording often cite an estimate of the

spatial resolution expected from this technique. For example, in a recent review, Grinvald

et al. (2001) report, on di�eren t pages,a rangeof estimatesbetween50 and 200microns as

the \accuracy" expected for intrinsic optical recording. Tracing the referencessupporting

these claims through the bibliography, it appears that the smaller range (50 microns)

originated in a claim of Bonhoe�er and Grinvald (1993). These authors did not perform

any measurements, but rather re-interpreted earlier experimental results performed by

Orbach and Cohen (1983) who reported a value of 200 microns for the FWHM of photon

scatter in salamanderolfactory cortex. Bonhoe�er and Grinvald (1993), however, restated

this result to be 50 microns. This issuewill now be discussedin detail.
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3.1.1 Corrections to the photon scatter measuremen t of Orbac h and Cohen

(1983)

Early in the history of optical recording, some experimental attention was paid to the

question of the resolution of the methodology, particularly with respect to photon scatter

in tissue. Unfortunately, this activit y doesnot seemto have beencontinued, and the only

source that could be located, following citations from the modern literature, are experi-

ments performed in the early to mid 1980'susing salamanderolfactory cortex (Orbach and

Cohen, 1983). This paper beginswith the following statement (Orbach and Cohen, 1983,

pg. 2251):

\Our understanding of brain function might be enhancedby a more detailed

monitoring of brain activit y. A useful method would have the time resolution

to monitor electrical activit y; have a �ne enoughspatial resolution (� 100 � m)

to resolve functional units, e.g. cortical columns . . . "

The conclusion of this paper was that the FWHM of photon spread for a pinhole in

aluminum foil, imaged through 500 microns of resectedsalamandertissue, using a micro-

scope objective for the optical system,was 200microns. With referenceto Figure 3�1, it is

clear that this experiment does not fully answer the question of the in vivo point-spread

function for a delta function source in tissue, becausethe aluminum foil of the pinhole

blocked photon back-scatter from below (in fact, there was no cortex below the pinhole in

any case). Secondly, it appearsthat there wereminor misstatements concerningthe scaling

of the detector array that was used. Thus, although this experiment is highly valuable,

and in fact unique as far as can be determined, the following sectionsattempt to provide

several corrections, in order to allow a direct comparison to the Monte Carlo simulation

results shown in Chapter 2.

Detector spacing

A careful reading of this and earlier papers by Cohen and coworkers (e.g., Grinvald et al.,

1981) indicates that the reported resolution value is slightly in error, since the authors
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\rounded down" their photodetector spacing. Orbach and Cohen (1983) useda photode-

tector array consistingof 144detectorsphotodiodes(12� 12), each of which wasseparated

by a gap of 100 microns. They describe the center-to-center spacingof this detector array,

when imaged with a 10:5� microscope objective, as 100 microns. However, a simple cal-

culation, using the previous detector description, which is well documented in their paper,

shows that the detector spacingwasactually 142microns1. Evidently , the authors rounded

this down to 100microns in their report. In Figure 3�2, we show a re-creation of their data,

and a least-squares�t to it.

Photon back-scatter

A secondcorrection to the FWHM photon scatter estimate of Orbach and Cohen (1983)

is related to their useof a pinhole as an optical target. The problem is that the existence

of a pinhole aperture cuts o� photons which might have scattered below the aperture, but

which might eventually scatter back into the region of interest. In cortex, a point source

will scatter light both backwards and forwards, eventually �nding its way to the surface.

The cloud of scattered photons, in vivo, would be (approximately) symmetric around the

point source. With a pinhole aperture, only the top half of the cloud can contribute.

The bottom half is cut-o� by specular re
ection and absorption in the pinhole aperture

material.

In order to assessthe quantitativ e signi�cance of this, a Monte Carlo run wasperformed

with the equivalent of a pinhole aperture in place. It was found that the FWHM of the

joint optical-scatter point spread function was reducedby about 30%.2 These results are

summarized in Table 3.1. (Note that thesesimulations were run using macroscope optics,

rather than the microscope optics used in the experiment of Orbach and Cohen (1983),

accounting for the larger values in the table. This is an important point which will be

1Each photodiode is 100+ 1400microns center-to-center. Dividing by the 10:5� magni�cation they used
results in 142 micron spacing, center-to-center

2Values for photon attenuation for � a = 0:2 cm� 1 and for � a = 2:7 cm� 1 were used, yielding identical
ratios.
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Figure 3�2: (Top) Reproduction of the photodiode receptor responseob-
tained by Orbach and Cohen (1983) for imaging a pin-hole through 500
microns of salamandercortex. Their reported detector spacing of 100 mi-
crons has been corrected to 142 microns (see text). (Bottom ) Gaussian
and Cauchy distributions were �t in a least-squaressenseto the data. The
detector spacingis too coarseto obtain a good �t, but the results shown are
consistent with a GaussianFWHM of about 250 microns, after correction
for photo-diode spacing.



79

� a (in cm� 1) Two sided One sided (Pinhole Mask) Ratio

0.2 681 516 1.3
2.7 595 460 1.3

Table 3.1: Simulation results were run at di�eren t valuesfor � a|the pub-
lished value at 2:7 cm� 1 and a much smaller value at 0:2 cm� 1|in order
to test the possibility that the published valuesof scatter basedon freshly
resectedtissue might be too large. The two sided model results refer to
the run in which cortex exists both above and below a test sourceat 500
microns. The one-sidedresults refer to runs in which a pinhole mask was
used as a \ligh t source". This e�ectiv ely cuts o� photon scatter from be-
low the mask, hencethe term \one-sided". The intention was to determine
the underestimate of photon scatter due to the use of a pinhole mask by
Orbach and Cohen (1983). As shown, this does in fact underestimate the
amount of scatter, with a common ratio of 1.3, for both assumedvaluesof
attenuation. It thus appears that the pinhole measurement of Orbach and
Cohen (1983) needsto be adjusted to a 30% larger value to account for
an in vivo re
ectance sourcein cortex, in which tissue would exist at 500
microns both above and below the source,not only above the sourceas is
the casefor the pinhole mask experiment.

addressedbelow.)

There appearsto bea 30%underestimateof photon scatter in the experiment of Orbach

and Cohen (1983), causedby the useof a pinhole in cortex as the optical target. Applying

this correction in
ates the valueof 284micronsdeducedfrom the 200micron value reported

by Orbach and Cohen (1983) to 370 microns. These data were too coarsely sampled to

discriminate betweena Gaussianand a Cauchy distribution, as indicated in Figure 3�2.

Macroscop e optics

Almost all modern optical recording experiments usethe macroscope asan optical element.

Orbach and Cohen (1983) used a microscope. The macroscope has a numerical aperture

of 0:2. The microscope used by Orbach and Cohen (1983) had a numerical aperture

of 0.4. The di�erence is that the macroscope has signi�cantly less depth-of-�eld, and

so is signi�cantly more \blurred" than a microscope objective would be under the same
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conditions.3 No notice of this wasmadeby Bonhoe�er and Grinvald (1993) in their estimate

of photon scatter. However, it is certainly true that the 370 micron FWHM (Gaussian

distribution) that is estimated here from the data of Orbach and Cohen (1983) would

be considerably larger had a macroscope lens been used by them. Since we have not

simulated the microscope optics used by Orbach and Cohen (1983), it is not possible to

quantitativ ely correct this to the conditions of our simulations as discussedin Chapter 2,

which are the conditions of most modern optical recording. However, the results of our

simulations indicate that for a condition of 500microns focusdepth on on an object which

is physically located at 500 microns depth, a FWHM of 516 microns (� a = 2:7 cm� 1)

is obtained (seeFigure 2�13). This is to be compared with the 370 microns obtained by

Orbach and Cohen (1983) with microscope optics. The di�erence would seemto be easily

accounted for by the much larger blur associated with the macroscope optics.

3.1.2 Corrections to Bonho e�er and Grin vald (1993)

Given the precedingdiscussion,it seemsthat the data of Orbach and Cohen(1983) can be

interpreted in two di�eren t ways. Given the analysis presented here, they report that 500

microns of salamandercortex, when corrected for pinhole optics as outlined above, should

yield a FWHM of 370 microns. Bonhoe�er and Grinvald (1993) reducethis estimate to 50

microns. This is nearly an order of magnitude reduction in the FWHM. In this section,

the sourceof this discrepancywill be demonstrated,with referenceto their justi�cation for

reducing the FWHM reported by Orbach and Cohen (1983).

Bonhoe�er and Grinvald (1993, pg. 4177) state:

\. . . light-scattering properties of the tissue must also be considered. Orbach

and Cohen (1983) showed that, in the salamanderolfactory bulb, image blur

due to light scattering and out-of-focuscontributions waslessthan 200 � m from

3 It should be remembered that in turbid tissue such as cortex, the \ob ject" necessarilyoccupiesmultiple
depth planes, due to photon scatter. It is therefore impossible for the entire object to be in focus at one
time.
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a depth of 1 mm. Preliminary measurements (D. Malonek and A. Grinvald,

unpublished observations) suggesta similar value for mammalian cortex.

\F urthermore, it should be emphasizedthat whenever many maps are analyt-

ically compared, an improved resolution is achieved. It has been shown by

simple simulations that, if the light scattering of the tissue is approximated by

a Gaussiancurve, two points cannot be resolved if they are closerthan the half-

width of the light scattering curve. However, if a di�eren tial map is calculated,

the spatial resolution increasesand is mostly limited by the signal-to-noiseratio

of the mapping signal (D. Shohamand A. Grinvald, personalcommunication).

In conclusion, our current estimate is that in the con�guration used here the

technique has a (lateral) spatial resolution of 50{100 � m."

Presumably, Bonhoe�er and Grinvald assumethat subtracting images,as they do in

their di�eren tial imaging technique, is a form of deconvolution|if each image is blurred,

then the di�erence of the imagesis lessblurred. However, this is clearly incorrect. Image

subtraction and convolution are linear operations that commute. Speci�cally , if weconsider

a pair of imagesI 1(x; y) and I 2(x; y), which are each blurred, i.e., convolved with the same

kernel G(x; x0; y; y0), then we have for the blurred images

B1(x; y) =
ZZ

dx0dy0 G(x; x0; y; y0) I 1(x0; y0)

B2(x; y) =
ZZ

dx0dy0 G(x; x0; y; y0) I 2(x0; y0)

But,

B1(x; y) � B2(x; y) =
ZZ

dx0dy0 G(x; x0; y; y0) I 1(x0; y0) �
ZZ

dx0dy0 G(x; x0; y; y0) I 2(x0; y0)

=
Z

dx0dy0 G(x; x0; y; y0)
�
I 1(x0; y0) � I 2(x0; y0)

�
(3.2)

In words, the convolution of the di�erence of two imagesis equal to the di�erence of the

convolution.
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Obviously, image subtraction doesnot deblur (i.e., deconvolve) blurred images.4

It is concluded that their very large reduction of 200 microns to 50 microns is an

error. In fact, they have underestimated the photon scatter in cortex by nearly an order

of magnitude.

3.2 E�ectiv e FWHM in in trinsic optical imaging

The �rst 200 microns of cortex are cell free (Maldonado et al., 1997), consisting of intra-

cortical white matter. Optical recording studies generally focus the macroscope at 300

microns (e.g., Bartfeld and Grinvald, 1992; Maldonado et al., 1997), and often deeper at

750microns (e.g., Womelsdorfet al., 2001). Very deepfocusof the macroscope contributes

signi�cant optical blur due to the small depth of �eld of the instrument, a feature which

has often beenclaimed to be an advantage, sincesuper�cial blood vesselsare blurred out

of existenceby focus at 300 microns (Grinvald et al., 2001). However, the major point of

this thesis is that cosmetically improving the image quality at the expenseof the accuracy

of key quantitativ e measurements is a poor choice.

It is important to emphasizethe sum over depth necessaryfor a distributed source

of cortical signal, which is mathematically expressedin (3.1). For the special caseof a

columnar system, the distributed sourceis a \line-source", as discussedpreviously. Intu-

itiv ely, the following situation holds. A sourceat somedepth in the cortex scattersphotons

throughout the full depth of cortex. The probabilit y density of this scatter is computed

by the Monte Carlo simulation. The photons which contribute to the signal are largely

those which have scattered up into the upper layers of the cortex, sincethe probabilit y for

escape at deeplevels is very small. This doesnot mean that deepstructure is not visible.

4Deconvolution of an image with a blur kernel is a large topic in image processing. One (very simple, and
not very numerically stable) way to do it is to divide the Fourier Transform of the image with the Fourier
transform of the blur kernel, and then perform the inverse Fourier Transform. However, this requires
extremely good knowledge of the blur kernel, and extremely high signal-to-noise ratio. The reason is that
the deblur is e�ectiv ely a high-pass �lter, and can greatly accentuate noise (Bertero, 1989). The deblurring
of images is sometimes referred to as super-resolution, and is known to require very high signal-to-noise
ratios in the range of 1000:1(Weisset al., 1999). But optical recording has an SNR of 1:1000. It is a million
times too small to apply super-resolution methodology.
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Rather, the photons which have scattered from deep structure, and those whic h enter

free space and then the optics are heavily biasedtowards the upper layers.

Given the point-spread functions estimated in Chapter 2, it is possibleto predict the

intrinsic optical recording signal in terms of a presumed three-dimensional cortical re-


ectance function: convolution with the Green's functions determined by the joint Monte

Carlo optical simulation would provide this, for the assumedoptics (the macroscope in this

case).

For a columnar model of cortex, it is assumedthat there is the equivalent of a \line-

source"|a vertical line of delta function re
ectance sources. In this case, we de�ne a

\columnar point spread function" (CSF) which is obtained by summing the e�ects of a

line of delta function sources.This CSF is the relevant kernel to usefor a two-dimensional

(i.e., columnar) model of cortical functional architecture.

In Figure 3�3, the CSF is shown for summation between100 microns and 500 microns,

for di�eren t assumedfocal depths. The CSF seemsto be strongly dominated by the point-

spreadfunctions characteristic of the top levels of cortex, although it is much more broad

tailed.

In Figure 3�4, the CSF is shown for summation between 300 and 500 microns. This

is appropriate for layers I I and I I I, omitting layer I of Macaque visual cortex, the layers

of V1 (Macaque) in which oriented cells predominate. The omission of layer I data is

motivated by the observation that the �rst several hundred microns of cortex are occupied

by cell-free, �b er dominated layer I processes.Even if the apical dendrites and other white

matter that exists in this top layer of cortex provided an intrinsic optical signal, it would

certainly be very broadly spread: the apical dendrites are 200{300 microns in size, and

heavily overlapped, and are strongly anisotropic. If these contribute a signal determined

by the deeper soma,it would be very hard to relate the deepfunctional architecture to any

super�cial white matter signal.

Giventhis background, several di�eren t assumptionsconcerningthe nature and location

of the cortical signal will now be addressed.
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Case 1: Layer I (white matter) does contributes to the signal

It is possible that layer I, even though consisting of white matter, might act as a source

of signal, perhaps through the apical dendrites of deeper cortical cells. In this case,the

FWHM for focus at 300 microns and signal at 100 microns (300, 100) FWHM is 112

microns (seeFigure 2�13). However, the deeper layers would certainly still contribute, as

in the previous case. Also, it is important to emphasizethat a white matter contribution

to the signal, if it exists, would undoubtedly be biologically broadenedby the extensive

overlap of apical dendrites in layer I, which is typically on the order of several hundred

microns.

Case 2: Layer I (white matter) does not contribute

If it is assumedthat layer I of cortex consistsof white matter which doesnot contribute at

all to the optical signal, and it is assumedthat depth of focusis 300microns, consistent with

the experimental conditions cited by Bartfeld and Grinvald (1992) for pinwheelalignment,

and by Maldonado et al. (1997) for sharpnessof tuning near pinwheels,it is reasonableto

use the data corresponding to a focal depth of 300 microns and a CSF corresponding to

300{500microns. This yields a distribution which is very similar to Cauchy, with a FWHM

of 295 microns, shown in Figure 3�4.

3.2.1 Post-pro cessing

Most optical recordings experiments digitally apply a low-pass �lter to the data after it

has beencollected in the range of 100 microns.

3.2.2 Orien tation undersampling

The majorit y of optical recording experiments have usedonly four orientations of gratings,

aspointed out by Womelsdorfet al. (2001), who showedexperimentally that undersampling

the orientation spacein this fashion producessubstantial annihilation and movement of

pinwheel centers. Quantitativ ely, Womelsdorf et al. (2001) comparedan optical recording
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obtained from the samepreparation, di�ering only by sampling four, eight and sixteen ori-

entations. The meanpinwheeldisplacement associated with the four-samplecondition was

47 microns, with displacements up to 150microns and considerableannihilation. This is an

extremely important result, becauseit is the only extant direct experimental veri�cation

that low-pass5 �ltering (in this casevia aliasing) will causepinwheel center displacement

and annihilation.

We can estimate net FWHM was due to undersampling by using the results of Wood

(2001), who determined the meanpinwheeldisplacement associated with low-pass�ltering

(shown in Figure 1�13). It is clear from this �gure that a mean shift of 47 microns cor-

responds to a total FWHM kernel of about 200 microns. This is consistent with a rough

guessat the e�ect of aliasing in the orientation domain. A full range of orientation [0; � )

corresponds to about 600microns.6 Sampling this with four gratings corresponds to a spa-

tial sampling of 150 microns. Shannon'ssampling theorem states that aliasing will occur

at twice this period, or 300 microns (Unser, 2000). This is comparable to the e�ectiv e

low-passthat was derived above 200 microns from Wood's simulation results.

3.2.3 Capillary bed undersampling

One of the common anecdotal justi�cations of claiming that optical recording can resolve

50 microns (e.g., Grinvald et al., 2001) is that the blood capillary bed spacingis 50 microns.

However, brief considerationof Shannon'ssampling theoremwill indicate that if the sample

interval (capillary spacing) is 50 microns, then, similar to the aliasing arguments above

for orientation undersampling, there will be a maximum resolution of 100 microns (i.e.,

accounting for Shannon'ssampling theorem).

5Aliasing is not strictly a low-pass �lter, in a linear sense,but data in the frequency above the Shannon
sampling limit is aliased into other frequency bands, therefore truncating the high-frequency pass band.
For white noise, aliasing will be close to the e�ect of a low-pass �lter, since it will uniformly scatter high-
frequency power, from frequencies that are twice the spatial sampling Shannon limit, uniformly . In this
case,aliasing will be much lik e a low-pass �lter. For data that is not white, the \scatter" due to aliasing
will not be uniform, but the basic idea remains: under-sampling is a \dirt y" form of low-pass �ltering, and
the Shannon frequency limit at twice the sampling interval is a measureof the cut-o� frequency.

6The spatial period, or repetition period of orientation in cat V1, is about 600 microns.
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3.2.4 Motion artifact

Although an attempt is made to keep cardiac and pulminary pulsation to a minimum,

there is likely to be someresidual blur associated with motion, although there is so little

discussionof this in the literature that it is not possibleto provide an estimate.

3.2.5 Long tailed distributions

The distributions shown in Figures 2�13 and 2�14 resemble Cauchy distributions more

strongly than Gaussiandistributions in that they have longer, heavier tails. The e�ect of

long tails is to greatly magnify the e�ects of pinwheel motion and annihilation for a given

FWHM as demonstrated in Figure 3�5. In other words, a Cauchy distribution is really

\broader" than a Gaussian,for the sameFWHM.

3.3 Conclusions

From the discussion above, and the Monte Carlo results, the following conclusionsare

drawn.

If the e�ectiv e signal for optical recording does not include layer I, then the e�ec-

tiv e physical FWHM is in the range of 300 microns. The additional e�ects listed are

likely to contribute a bit, but it is important to note that combining low-pass �lter

associated with Gaussian distributions requires a quadrature summation, so that the

largest one tends to strongly dominate. For example, if one combines a 300 microns

photon-optics FWHM with a 100 microns post-processingFWHM, and a 100 microns

miscellaneous(e.g., motion artifact, orientation undersampling, etc.) FWHM, one obtains

� net =
p

3002 + 1002 + 1002 = 332 microns. It appears that the combined photon scatter

and optical blur is by far the largest of the e�ects that might be operative. This, in the

end, is the limiting factor on the accuracyof intrinsic optical recording.

If the e�ectiv e signal for optical recording exists in layer I, then the physical FWHM

is about 110 microns, but there is in this casecertainly a very large biological blur due to

the transfer function from deeppyramidal cell bodies to super�cial apical dendrites.
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Figure 3�5: The e�ect of smoothing complex-valued white noisewith vari-
ouspoint spreadfunctions basedon di�eren t distributions. (a) The result of
blurring complex-valued white noisewith a Gaussiankernel with a FWHM
of 246 microns. (b) The result of blurring the same noise pattern, but
with a Cauchy distribution of equal FWHM. Note that the orientation map
contains far fewer orientation singularities that that of the Gaussianblur.
(c) Convolution of the samenoise pattern with the point spread function
computed via Monte Carlo simulation at a focus depth and signal depth of
300 microns. This pattern more closely matches the results of the Cauchy
blur than that of the Gaussian blur. (Orientation colormap displayed on
right.)
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3.3.1 Consequences to orien tation mapping

The motivation for this thesis was an attempt to answer the question:

What is the current orientation map structure of primary visual cortex?

As demonstratedin the �rst chapter of this thesis,a systematicerror in orientation pinwheel

location that is on the order of 300 microns is su�cien t to causea systematic shift of

the presumptive location of pinwheel centers by about 150 microns. Since the size of

cytochrome oxidasepu�s is 150� 250microns in the Macaque(Horton, 1984), a systematic

mean shift of 125 microns would guarantee that an observed pinwheel center, according

to optical recording, is never within the boundaries of a CO pu�. This is su�cien t to

account for the claimed lack of alignment of pinwheel centers and CO pu�s, according to

Bartfeld and Grinvald (1992). Similarly, this error would explain why Maldonado et al.

(1997) claim that orientation tuning width of single neuronsat pinwheel centers is similar

to that of neurons far from pinwheel centers. Due to this shift, which amounts to nearly

half of the pinwheel spacing, it is unlikely that Maldonado et al. (1997) were ever actually

recording \pin wheel center" neuronsat their presumedlocation of pinwheel centers!

In summary, the soleexperimental evidencefor the Grinvald model of the hypercolumn

appears to be unfounded.

3.3.2 Prosp ects for impro ving the spatial resolution optical recording

The principal contribution to the FWHM of intrinsic optical recording appearsto be based

in the physicsof photon scatter, and the optical properties of the macroscope. The physics

contribution is non-negotiable. The macroscope contribution could be minimized by using

optics of larger numerical aperture. This would result in less light collection, and longer

experimental run-times, with the consequent issueof increasedphotolytic damageto the

cortex. Nevertheless,the obvious conclusionof this thesis is that useof the macroscope is

counter-indicated for experiments in which spatial resolution is critical. The \feature" of

the macroscope, that it blurs super�cial blood vesselsto invisibilit y, as shown by Grinvald
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et al. (2001), is actually a potential \bug" in terms of precisemeasurements of orientation

maps in visual cortex. Secondly, the common practice of focusing the optics at levels of

300 to 750microns can be a signi�cant sourceof blur. Super�cial focuswould signi�cantly

improve the resolution of the technique, even though the attendant blood vesselimages

that re-appearedwould be lessaesthetically pleasing.

Finally, there is some possibility of applying deconvolution methods to improve the

spatial resolution of intrinsic optical recording. Although the signal to noise ratio is not

favorable for the use of super-resolution techniques, detailed knowledge of the Green's

Function of the cortex for photon scatter, and the optical properties of the lensesused,as

demonstratedin this thesis,arean absolutenecessity to evenattempt to usethesemethods,

and conceivably might be applied in the future to bring the accuracy of intrinsic optical

recording to a range in which the orientation mapsof visual cortex could be quantitativ ely

studied.
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