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Abstract

The combinatorial Dirichlet problem is formulated, and an algo-
rithm for solving it is presented. This provides an e�ectiv e method
for interpolating missing data on weighted graphs of arbitrary con-
nectivit y. Image processingexamplesare shown, and the relation to
anisotropic di�usion is discussed.

1 In tro duction

Uniformly sampledimagesare conventionally represented via 4-connectedor
8-connected(Cartesian) grids. However space-variant imagesrequire a more
exible imagetopology. In previouswork, the useof a graph representation
has been found to be useful for representing imageswhoseresolution and
local topology is not constant [1].

Space-variant sampling of visual spaceis ubiquitous in the higher verte-
brate visual system [2]. In computer vision, this architecture is of interest
becauseit facilitates real-time vision applicationsdueto a large(albeit lossy)
reduction in space-complexity [3], and becauseit represents a prototype for
adaptive sampling in a more general setting. In a biological context, pri-
mate visual sampling has been demonstrated to be strongly spacevariant
[4], possessinga singlehigh resolution area(fovea) with resolution falling o�
linearly toward the periphery. Many non-primate speciespossessan even
moreexotic visual architecture. Several bird specieshave multiple foveas[5],
and elephants have a magni�ed representation in the region of their trunk
to facilitate \eye-trunk" coordination [6]. Computer vision systemsin which
the architecture and spatial sampling is adaptively tailored to the speci�c
problem domain may well follow this designpath. Thus, it is of importance
to develop a universalapproach to visual representation which is not implic-
itly dependent on a regular Cartesian grid. Representations of image data
on graph theoretic structures provide onesuch route to a universalsampling
and topology for visual sensing,since it separatesthe topological (connec-
tivit y) from the geometric(sampling arrangement of visual space)aspectsof
the sensor.

This paper addressesthe problem of how to interpolate nodal data on
a graph, and then demonstratesapplications to imageprocessing.An algo-
rithm is presented that allows interpolation from known valueson the nodes
of a graph to missing data in such a way that the interpolated values are
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\smooth". The method is to solve the combinatorial Laplaceequation with
Dirichlet boundary conditions given by the known values. A solution to the
combinatorial Laplace equation has several desirableproperties in the con-
text of an interpolation method (seebelow). Both isotropic and anisotropic
interpolation are handled similarly. Furthermore, useof the algorithm is in-
dependent of the dimension in which a graph is embedded. Combinatorial
di�eren tial operatorscorresponding to the vector calculusoperatorsDiv and
Gradare usedto develop combinatorial versionsof the Laplaceand Laplace-
Beltrami operators. This homology between continuum and combinatorial
(graph) algorithms is well known in the literature of circuit theory, mechan-
ical engineering,and related areasin which discretizationsof partial di�er-
ential equationsplay a central role [7]. The solution to the Laplaceequation
is analogousto solving an equivalent electrical circuit. The solution to prob-
lemsof this type, as�rst noted by Maxwell [8, 9], represents a minimal power
dissipation state in the electrical circuit formulation, asshown by Dirichlet's
Principle [10, 11]. An application of theseideasto isotropic and anisotropic
imageinterpolation is presented, and a brief discussionof the relation of this
work to anisotropic di�usion is outlined.

2 Diric hlet problem

Solving the Laplaceequation in order to \�ll-in" missingvalueshasbeende-
scribed in the context of digital elevation models[12, 13], imageediting [14],
and is even usedby the

�

MATLAB function roifill.m to �ll in regionsof
missingdata in images.What is new about the present work is the general-
ization of this interpolation concept to arbitrary geometries,topologiesand
metrics, i.e., to an imagerepresentation basedon an arbitrary graph rather
than on the familiar uniform raster.

2.1 De�nitions

The Diric hlet in tegral may be de�ned as

D[u] =
1
2

Z



jr uj2d
 ; (1)

for a �eld u andregion
 [15]. This integral arisesin many physicalsituations,
including heat transfer, electrostaticsand random walks.
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A harmonic function is a function that satis�es the Laplace equation

r 2u = 0: (2)

The problem of �nding a harmonic function subject to its boundary val-
ues is called the Diric hlet problem . The harmonic function that satis�es
the boundary conditions minimizes the Dirichlet integral, sincethe Laplace
equation is the Euler-Lagrangeequation for the Dirichlet integral [11]. In a
graph setting, points for which there exist a �xed value(e.g.,data nodes)are
termed boundary poin ts. The set of boundary points provides a Dirichlet
boundary condition. Points for which the valuesare not �xed (e.g., missing
data) are termed in terior poin ts.

2.2 In terp olation

Solutions to the Laplace equation with speci�ed boundary conditions are
harmonic functions, by de�nition. Finding a harmonic function that satis�es
the boundary conditions may be viewed as a method for �nding valueson
the interior of the volume that interpolate betweenthe boundary valuesin
the \smoothest" possiblefashion[15]. In this section,we discussthe proper-
ties of harmonic functions that make them useful for interpolation, de�ning
smoothnessin terms of extremal solutions to the Dirichlet integral.

From a physical standpoint, onemay think of a heat sourcewith a �xed
temperature at the center of a copper plate and a secondheat sourcewith
�xed temperature on the boundary of the copper plate. The temperature
values taken by the plate at every point are those assumedby a harmonic
function subject to the internal and external boundariesimposedby the heat
sources.In this analogy, the temperaturesmeasuredon the insideof the cop-
per plate may be viewed as smoothly interpolated betweenthe temperature
on the internal heat sourceand the external heat source. The internal and
external heat sourcesare consideredto be boundary points, while points on
the copper plate for which temperature valuesare found are interior points.

Three characteristics of harmonic functions are attractiv e qualities for
generatinga \smooth" interpolation.

1. The mean value theorem states that the value at each point in the
interior (i.e., not a boundary point) is the averagevalueof its neighbors
[16].
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2. The maximumprinciple follows from the meanvaluetheorem. It states
that harmonic functions may not take valueson interior points that are
greater (or less)than the valuestaken on the boundary [16].

3. The Dirichlet integral is minimized by harmonic functions [10]. This
meansthat the integral of the gradient magnitudesfor the systemwill
be minimized, subject to �xed boundary conditions.

2.3 Com binatorial form ulation: Di�eren tial operators
on graphs

A graph consists of a pair G = (V; E) with vertices v 2 V and edges
e 2 E � V � V with cardinalities n = jV j and m = jE j. An edge, e,
spanning two vertices, vi and vj , is denoted by eij . A weighted graph
assignsa (typically nonnegativeand real) valueto each edgecalleda weight .
The weight of an edge, eij , is denoted by w(eij ) or wij . The degree of
a vertex is di =

P
w(eij ) for all edgeseij incident on vi . Requiring that

wij > 0 for all i and j permits interpretation of 1=wij as a distancebetween
nodes vi and vj . In other words, nodesconnectedby an edgewith a large
weight may be thought of having a short distancebetweenthem or asbeing
highly connected.Wewill seelater that in the analogyof an electricalcircuit,
approaching an in�nite weight on an edgespanningtwo nodesis analogousto
approaching an electrical short betweenthe nodes(i.e., weight is interpreted
as conductance).

One representation [17] of the combinatorial Laplacian operator (see[18,
19, 20, 21] for a discussionof alternatives)is asthe n � n Laplacian matrix
(see[22] for a review)

L vi vj =

8
><

>:

dvi if i = j ;

� wij if vi and vj are adjacent nodes;

0 otherwise:

(3)

where L vi vj is used to indicate that the matrix L is indexed by vertices vi

and vj .
Employing the notation of [7], de�ne the m � n edge-node incidence
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matrix as

Aeij vk =

8
><

>:

+1 if i = k;

� 1 if j = k;

0 otherwise

(4)

for every vertex vk and edgeeij , whereeach eij hasbeenarbitrarily assigned
an orientation. As with the Laplacianmatrix above, Aeij vk is usedto indicate
that the incidencematrix is indexedby edgeeij and nodevk . As an operator,
A may be interpreted as a combinatorial gradient operator and AT as a
combinatorial divergence[23].

We de�ne the m � m constitutiv e matrix , C, as the diagonal matrix
with the weights of each edgealong the diagonal.

As in the continuum setting, the isotropic combinatorial Laplacian is the
composition of the combinatorial divergenceoperator with the combinatorial
gradient operator, L = AT A. The constitutive matrix may be interpreted as
representing a metric. In this sense,the combinatorial Laplacian generalizes
to the combinatorial Laplace-Beltrami operator [24] via L = AT CA. The
caseof a trivial metric, (i.e., equally weighted, unit valued,edges)reducesto
C = I and L = AT A.

Table 1 summarizesthe relationship of familiar vector calculusoperators
to the combinatorial graph theoretic operators de�ned above and Table 2
summarizesthe relationship of equationsin both domains.

With these de�nitions in place, we can determine how to solve for the
harmonic function that interpolatesvalueson free(\in terior") nodesbetween
valueson �xed (\b oundary") nodes.

A combinatorial formulation of the Dirichlet integral (1) is

D[u] =
1
2

(Au)T C(Au) =
1
2

uT Lu (5)

and a combinatorial harmonic is a function u that minimizes(5). SinceL is
positive semi-de�nite, the only critical points of D[u] will be minima.

If we want to �x the valuesof boundary nodesand compute the interpo-
lated valuesacrossinterior nodes,we may assumewithout lossof generality
that the nodes in L and u are ordered such that boundary nodes are �rst
and interior nodes are second. Therefore, we may decomposeequation (5)
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into

D[ui ] =
1
2

�
uT

b uT
i

�
�

Lb R
RT L i

� �
ub

ui

�

= uT
b Lbub + 2uT

i RT ub + uT
i L i ui : (6)

where ub and ui correspond to the potentials of the boundary and interior
nodesrespectively. Di�eren tiating D[ui ] with respect to ui and �nding the
critical point, yields

L i ui = � RT ub; (7)

which is a system of linear equations with jui j unknowns. If the graph is
connected,or if every connectedcomponent contains a boundary node, then
equation (7) will be nonsingular [17]. Although various methods exist for
solving a systemof linear equations[25, 26], the conjugategradient method
is arguably the best in terms of speed and parallelization [27]. Conjugate
gradients requiresonesparsematrix multiply per iteration, which is bounded
above by dmaxs, wheredmax is the maximum degreeof an interior node and
s is the cardinality of the set of interior nodes. Assuminga constant number
of iterations are required for convergenceand that the maximum degreeis
independent of the number of nodes (e.g., a 4-connectedlattice), the time
complexity of the algorithm is O(s).

Combinatorial harmonic functions arisein a wide variety of applications,
playing a central role in systemsof springs [7], the stressand strain of con-
nectedbeams[7], Markov chains[28] and electricalcircuits [28]. As an exam-
ple, we will examinethe application domain of electrical circuits. The other
contexts are essentially identical, di�ering mainly in languageand physical
meaningof the respective equations(see[7] for a full discussion).The elec-
trical metaphor, however, is of greater interest in the present context since
there is somechancethat a VLSI implementation of thesemethods is possible
in terms of the equivalent circuits presented here.

With the notation above, the three main laws governing circuit theory
may be written as

AT y = f (Kirc hho� 's Current Law) (8)

Cp = y (Ohm's Law) (9)

p = Ax (Kirc hho� 's Voltage Law); (10)

wheref represents current sourcesat the nodes,p the potential drop (voltage)
acrossa branch, x is the potential at a node and y is the current through a
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Operator Vector calculus Combinatorial

Gradient r A

Divergence r� AT

Curl r � r K

Laplacian r � r AT A

Beltrami r C � r AT CA

Table1: Correspondencebetweencontinuum di�eren tial operatorsand com-
binatorial di�eren tial operators on graphs. C represents a constitutive ma-
trix relating ux to o w, e.g., a conductivity tensor, a di�usion tensor, a
thermal conductivity, a stress-straintensor, or, in the context of di�eren tial
geometry, a metric tensor. A is the incidencematrix of the graph represent-
ing the topology of the problem. K is the cycle-edgematrix of the graph
[7].

branch. The weights on a branch de�ning C are given by the conductance
of the branch (i.e., the reciprocal of the resistance).

The power, P, associated with a circuit may be written as

P =
1
2

yT C � 1y =
1
2

xT Lx (11)

A comparisonof equations(5) and (11) demonstratesthat the set of electric
potentials at the nodesof a circuit is a discreteharmonic function, i.e., those
nodes with a �xed potential due to voltage sourcesor grounding are the
boundary nodes,the nodeswithout a �xed potential are the interior nodes.
Furthermore, the interior nodesassumepotentials that minimize (5) (see[28]
for extensivediscussionof electricalnetworks, randomwalksand the Dirichlet
integral). If one were to build a circuit with the sametopology as a graph,
with appropriate voltagesourcesto encode the boundary valuesand resistors
to encodethe weights, the physicalsolution (i.e., a minimum energysolution)
to the interpolation problem would be exactly equal to the nodal potentials
of every interior node. Figure 1 illustrates the circuit corresponding to a
graph interpolation problem.
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Equation Continuum Graph

KVL r V = E Ax = e

KCL r � J = d�
dt AT y = f

Ohm's Law � � 1E = J Ce = y

Dirichlet Integral 1
2

R

 jr uj2d
 1

2xT AT CAx

Table2: Correspondencebetweencontinuum di�eren tial equationsand com-
binatorial di�eren tial equationson graphs. Kirchho� 's current law is a quasi-
static ( @B

@t = 0) approximation to Maxwell's Equation r � E = @B
@t . Kirch-

ho� 's voltage law follows from the de�nition of electric �eld as the gradient
of potential. Ohm's Law is a constitutive (phenomenological)law asserting
a presumedlinear dependencebetweenvoltage and current.

0

3 5

?

?

?

(a)

5V3V

- + -+

(b)

Figure 1: Interpolating on a graph with a harmonic is equivalent to setting
voltagesources(and grounds)at somenodesand readingo� the potentials at
nodeswhich arenot �xed. (a) A graph with known valueson somenodesand
unknown values(indicated with a `?') on other nodes. (b) The equivalent
circuit that would produce potentials on the nodesequal to those found by
the interpolation method.
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3 Results

In this sectionwe demonstratethe interpolation algorithm in the context of
imageprocessing.

3.1 Space-varian t (fo veal) images

In order to demonstratethe useof the interpolation algorithm on an arbitrary
graph, we employ an imagerepresented on a graph patterned after the space-
variant sampling of the primate foveal visual system [1]. The Lena image
wasimp orted to the space-variant graph structure by consideringthe space
variant point set as a resampling of a Cartesian raster and applying the
elliptical Gaussian�lters described in [29] (see[30] for more details on this
method as applied to space-variant imaging). Other methods for importing
a Cartesianimageto a space-variant graph could alsobe used,aslong asthe
output of the importing algorithm was an image �eld on nodes, as opposed
to facesor other components of the graph.

Here, we have removed image data in a circular region and performed
the interpolation obtained via (7) to �ll in the lost values. No weighting
wasusedto compensatefor the changinglength (if embeddedin a Euclidean
plane) of the edges. In other words, the interpolation was isotropic in the
sensethat every edgehad unit length (corresponding to unit resistorsin the
circuit analogy). The results may be seenin Figure 2. One can seethat the
region of the graph for which image values were removed take values that
smoothly interpolate betweenthe dark and light regions. However, sinceno
image information is encoded into the structure (i.e., uniform weights), the
interpolation algorithm simply �lls in the region with a smooth solution. In
the next section, it will be shown that encoding image information in the
weights and performing an anisotropic interpolation providesa solution that
resembles the missing (original) valuesmore than the isotropically interpo-
lated solution.

3.2 Anisotropic in terp olation

Anisotropic interpolation may be thought of as weighted interpolation or as
�nding the potentials in a resistive network in which the resistor valuesare
nonuniform. It is possibleto return to the missingdata situation of Figure 2
and perform anisotropic interpolation using weights derived from the image
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(a) (b)

(c) (d)

Figure 2: Interpolation of imagedata on a fovealmeshfrom which a holehas
been cut out. (a) Underlying foveal graph structure. (b) The Lena image
imported onto the foveal structure. (c) Foveal imagewith a hole arbitrarily
cut out of it. Underlying graph structure is shown insidethe hole. (d) Foveal
imagewith interpolated data in the hole.
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values (acquired before the data was removed). We employed a Gaussian
weighting function [31]

wij = exp(� � jI i � I j j) ; (12)

where I i is the image intensity at node (pixel) i and � is a dimensionless
parameter that controls the severity of the anisotropy inducedby the image
intensity. Beforeusing equation (12) the intensity gradients were histogram
equalized,sinceit wasdeterminedempirically that if they werenot equalized,
di�eren t valuesof the parameterswould berequiredto producesimilar results
for di�eren t images.

Weighting the space-variant mesh in accordancewith (12) allows for a
more accuratereconstructionof the missingdata values,asseenin Figure 3.

Building a weighted (i.e., anisotropic) graph for an imageusing equation
(12) allowsfor a smoothedreconstructionof the original imagevia anisotropic
interpolation from the sampling of a small number of points. Theserecon-
structed imagesresemble those produced by anisotropic di�usion methods.
This is becausethe solution to the Laplace equation is the steady state of
the di�usion equation with speci�ed boundary conditions [28]. The primary
di�erence betweendi�usion-based methods of imageenhancement and those
presented here is that di�usion methods approach zero (or constant) when
run for in�nite time, sinceDirichlet boundaryconditionsareusually not spec-
i�ed in di�usion approachesto image processing.Becauseof this, di�usion
methods (both isotropic and anisotropic) require a stopping condition, while
the present method solvesdirectly for a time-independent solution.

This relationship may be seeneven moreclearly by comparingthe equiv-
alent circuit for our interpolation algorithm and the equivalent circuit pre-
sented for anisotropicdi�usion by Peronaand Malik [31]. If onereplacedthe
voltagesourceat every node in our circuit with an appropriately chargedca-
pacitor, then the Perona-Malik equivalent circuit would be obtained exactly.
Insofar as similar results are produced for image enhancement tasks with
(steady state) anisotropic di�usion and the present method, two advantages
of anisotropic interpolation present themselves over di�usion. The �rst of
theseis that the solution to the Laplaceequation is a steadystate solution,
while the solution to the di�usion equation dependson time. Therefore,we
have no needto iterate and, thus, we circumvent the needto choosea stop-
ping point for the di�usion. Secondly, we can smooth lessor smooth more
in di�eren t areasof the image by decreasingthe sampling density in areas
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Figure 3: Anisotropic interpolation of imagedata on a foveal meshwith the
samehole as in Figure 2 has beencut out. Weights were determined using
� = 30 (seetext for details)

wherewe desiremore smoothing and increasingit in areaswherewe desire
lesssmoothing.

Figure 4 demonstratesresults that arevisually comparableto anisotropic
di�usion applied to the sameimage. To generateFigure 4, a 4-connected
lattice wasgeneratedwith weights obtained from equation(12) basedon the
Lenaimage. Sampleswerechosenfrom relatively uniform areasby computing
the squareroot of the sum of the edgegradients incident on each node. All
nodeswith a value below a threshold wereselectedas samplenodesto have
their values �xed. The remaining nodes were anisotropically interpolated,
given the �xed set. One can seethat sharp boundariesare maintained, due
to the encoding of imageinformation with weights. Areasof the imagewith
high variabilit y (e.g., the feathers)are smoothed considerablysincevery few
samplesweretaken, while areaswith initially low variabilit y remain uniform.

Of course,it is possibleto interpolate by a variety of samplingstrategies.
Figure 5 illustrates the results of di�eren t structured sampling schemes,as
well as the exibilit y to smooth more or smooth less in di�eren t areasof
the image. Using the sameweights as in Figure 4, but a di�eren t choice of
samples,it is possibleto keep the center of the image true to the original
while di�using out the background or vice versa.
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(a) (b)

(c) (d)

Figure 4: Anisotropic interpolation of an image basedon very sparsesam-
pling. (a) Original Lena image. (b): Magnitude of image gradient. (c):
Samplestaken from lowest magnitude points. (d): Anisotropically interpo-
lated image.
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Figure 5: Spatially nonuniform samplingallows for more \di�usion" in some
areasover others. This �gure demonstratesthe e�ects of two di�eren t spatial
sampling regimeson the anisotropic interpolation of the Lena image.
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4 Conclusion

We have posedthe question of how to interpolate nodal valueson a graph
and proposeda solution basedon solving the combinatorial Dirichlet prob-
lem. This interpolation method has desirableproperties as a result of the
meanvalue theorem and the maximum principle. Furthermore, the method
naturally incorporatesa metric into the interpolation if anisotropic interpo-
lation is desired.Finally, a circuit analogywaspresented which both a�ords
additional intuition into the processas well as holding open the possibility
for a VLSI implementation.

Applications of this method to image processingdemonstrate its use
for �lling in missing values in a space-variant image and in the anisotropic
smoothing of Cartesianimages.Further applicationsincludea smoothing op-
erator for multiresolution reconstruction of graph-basedpyramids or three-
dimensional interpolation for surfaces. Graphs are generalstructures that
may arise in three dimensionsfor the purposeof computer graphics [32] or
in an arbitrary number of dimensionsfor data clustering [33]. Since this
interpolation method dependsonly on the topology of the structure and not
any information about the dimensionality of the spacein which it is embed-
ded,onemay interpolate on graphstructuresexisting in arbitrary dimensions
possessingan arbitrary metric.
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