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Abstract

The combinatorial Dirichlet problem is formulated, and an algo-
rithm for solving it is presenied. This provides an e ectiv e method
for interpolating missing data on weighted graphs of arbitrary con-
nectivity. Image processingexamplesare shown, and the relation to
anisotropic di usion is discussed.

1 Intro duction

Uniformly sampledimagesare corvertionally represeted via 4-connectedor
8-connected(Cartesian) grids. Howewer space-ariant imagesrequire a more
exible imagetopology. In previouswork, the useof a graph represetation
has been found to be useful for represeting imageswhoseresolution and
local topology is not constart [1].

Space-ariant sampling of visual spaceis ubiquitous in the higher verte-
brate visual system[2]. In computer vision, this architecture is of interest
becauset facilitates real-time vision applicationsdueto alarge (albeit lossy)
reduction in space-complexit [3], and becauseit represeis a prototype for
adaptive sampling in a more general setting. In a biological cortext, pri-
mate visual sampling has been demonstratedto be strongly spacevariant
[4], possessin@ single high resolution area(fovea) with resolution falling o
linearly toward the periphery. Many non-primate speciespossessan even
more exotic visual architecture. Seeral bird specieshave multiple foveas[5],
and elepharts have a magni ed represetation in the region of their trunk
to facilitate \eye-trunk™ coordination [6]. Computer vision systemsin which
the architecture and spatial sampling is adaptively tailored to the specic
problem domain may well follow this designpath. Thus, it is of importance
to dewelop a universalapproad to visual represemation which is not implic-
itly dependent on a regular Cartesian grid. Represetations of image data
on graph theoretic structures provide one sud route to a universalsampling
and topology for visual sensing,sinceit separatesthe topological (connec-
tivit y) from the geometric(sampling arrangemen of visual space)aspects of
the sensor.

This paper addresseghe problem of how to interpolate nodal data on
a graph, and then demonstratesapplications to image processing.An algo-
rithm is preserted that allows interpolation from known valueson the nodes
of a graph to missing data in sud a way that the interpolated values are



\smooth". The method is to solve the combinatorial Laplace equation with

Dirichlet boundary conditions given by the known values. A solution to the
combinatorial Laplace equation has seeral desirableproperties in the con-
text of an interpolation method (seebelow). Both isotropic and anisotropic
interpolation are handled similarly. Furthermore, useof the algorithm is in-
dependen of the dimensionin which a graph is enbedded. Combinatorial
di erential operators correspnding to the vector calculusoperators Div and
Gradare usedto dewelop conmbinatorial versionsof the Laplaceand Laplace-
Beltrami operators. This homology between cortinuum and combinatorial
(graph) algorithms is well known in the literature of circuit theory, medan-
ical engineering,and related areasin which discretizations of partial dier-

ential equationsplay a certral role [7]. The solution to the Laplaceequation
is analogousto solving an equivalert electrical circuit. The solution to prob-
lemsof this type, as rst noted by Maxwell [8, 9], represetts a minimal power
dissipation state in the electrical circuit formulation, asshown by Dirichlet's
Principle [10, 11]. An application of theseideasto isotropic and anisotropic
imageinterpolation is preseried, and a brief discussionof the relation of this
work to anisotropic di usion is outlined.

2 Diric hlet problem

Solvingthe Laplaceequationin orderto \ ll-in" missingvalueshasbeende-
scribed in the cortext of digital elevation models[12, 13],imageediting [14],
and is even usedby the MATLAB function roifill.m  to Il in regionsof
missingdata in images.What is new about the presern work is the general-
ization of this interpolation conceptto arbitrary geometries,topologiesand
metrics, i.e., to an imagerepresetation basedon an arbitrary graph rather
than on the familiar uniform raster.

2.1 De nitions

The Diric hlet integral may be de ned as
Z

Dlul= 5 ir uid ; ()

fora eld uandregion [15. This integral arisesin many physicalsituations,
including heat transfer, electrostaticsand random walks.
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A harmonic function isafunction that satis esthe Laplace equation
r2u=0: (2)

The problem of nding a harmonic function subject to its boundary val-
uesis called the Diric hlet problem . The harmonic function that satis es
the boundary conditions minimizesthe Dirichlet integral, sincethe Laplace
equationis the Euler-Lagrangeequation for the Dirichlet integral [11]. In a
graph setting, points for which there exista xed value (e.g.,data nodes)are
termed boundary points. The set of boundary points provides a Dirichlet
boundary condition. Points for which the valuesare not xed (e.g., missing
data) are termed interior points.

2.2 Interp olation

Solutions to the Laplace equation with specied boundary conditions are
harmonicfunctions, by de nition. Finding a harmonic function that satis es
the boundary conditions may be viewed as a method for nding valueson
the interior of the volume that interpolate betweenthe boundary valuesin
the \smoothest" possiblefashion[15]. In this section,we discussthe proper-
ties of harmonic functions that make them useful for interpolation, de ning
smoothnessin terms of extremal solutionsto the Dirichlet integral.

From a physical standpoint, one may think of a heat sourcewith a xed
temperature at the certer of a copper plate and a secondheat sourcewith
xed temperature on the boundary of the copper plate. The temperature
valuestaken by the plate at ewvery point are those assumedby a harmonic
function subject to the internal and external boundariesimposedby the heat
sources.In this analogy the temperaturesmeasuredon the inside of the cop-
per plate may be viewed as smaothly interpolated betweenthe temperature
on the internal heat sourceand the external heat source. The internal and
external heat sourcesare consideredto be boundary points, while points on
the copper plate for which temperature valuesare found are interior points.

Three characteristics of harmonic functions are attractiv e qualities for
generatinga \smooth" interpolation.

1. The mean value theorem states that the value at ead point in the
interior (i.e., not aboundary point) is the averagevalue of its neighbors

[16].



2. The maximum principle follows from the meanvaluetheorem. It states
that harmonicfunctions may not take valueson interior points that are
greater (or less)than the valuestaken on the boundary [16].

3. The Dirichlet integral is minimized by harmonic functions [10]. This
meansthat the integral of the gradiert magnitudesfor the systemwiill
be minimized, subject to xed boundary conditions.

2.3 Combinatorial form ulation: Dieren tial operators
on graphs

A graph consistsof a pair G = (V;E) with verticesv 2 V and edges
e2 E V  V with cardinalites n = jVj and m = jEj. An edge,e,
spanning two vertices, v; and v, is denoted by e;. A weighted graph
assignsa (typically nonnegatiwe and real) valueto ead edgecalleda weight.
The weight of arpedge, g, is denoted by w(e;) or w;. The degree of
a vertex is d; = w(e; ) for all edgese; incidert on v;. Requiring that
w; > Ofor all i andj permits interpretation of 1=w; asa distancebetween
nodesv; and v;. In other words, nodes connectedby an edgewith a large
weight may be thought of having a short distance betweenthem or as being
highly connected.We will seelater that in the analogyof an electrical circuit,
approading anin nite weight on an edgespanningtwo nodesis analogougo
approading an electrical short betweenthe nodes(i.e., weiglt is interpreted
asconductane).

Onerepresetation [17] of the combinatorial Laplacian operator (see[18,
19, 20, 21]for a discussionof alternatives)is asthe n n Laplacian matrix
(see[22] for a review)

8
2 d, ifi=j;

Lvy =, w; ifvi andy; areadjacent nodes (3)
"0 otherwise

whereL,,, is usedto indicate that the matrix L is indexed by verticesv;
andyv;.
Employing the notation of [7], de ne the m n edge-nale incidence



matrix as 8
2+1 ifi=Kk;

Ag v = S 1 ifj =Kk; (4)
"0 otherwise

for every vertex v, and edgee; , whereead e; hasbeenarbitrarily assigned
an orientation. As with the Laplacianmatrix above, Ag, v, is usedto indicate

that the incidencematrix is indexedby edgee; and nodevy. As anoperator,

A may be interpreted as a combinatorial gradiert operator and AT as a

combinatorial divergence[23].

We de ne the m m constitutiv e matrix , C, asthe diagonal matrix
with the weights of eat edgealongthe diagonal.

As in the cortinuum setting, the isotropic conmbinatorial Laplacianis the
composition of the conmbinatorial divergenceoperator with the combinatorial
gradiert operator, L = ATA. The constitutive matrix may be interpreted as
represemting a metric. In this sensethe combinatorial Laplacian generalizes
to the combinatorial Laplace-Beltrami operator [24] via L = ATCA. The
caseof a trivial metric, (i.e., equally weighted, unit valued, edges)reducesto
C=1landL = ATA.

Table 1 summarizesthe relationship of familiar vector calculusoperators
to the combinatorial graph theoretic operators de ned above and Table 2
summarizesthe relationship of equationsin both domains.

With thesede nitions in place, we can determine how to solwe for the
harmonicfunction that interpolatesvalueson free (\in terior") nodesbetween
valueson xed (\b oundary") nodes.

A combinatorial formulation of the Dirichlet integral (1) is

D[u] = %(AU)TC(AU) = %uT Lu (5)

and a conmbinatorial harmonicis a function u that minimizes(5). SincelL is
positive semi-de nite, the only critical points of D[u] will be minima.

If wewant to x the valuesof boundary nodesand computethe interpo-
lated valuesacrossinterior nodes,we may assumewithout lossof generality
that the nodesin L and u are ordered such that boundary nodesare rst
and interior nodes are second. Therefore, we may decompse equation (5)



into

_ 1 T.T Lb R Up
Dlui] = 2 WU gt o
= upLpup+ 2u' R U, + U Liu;: (6)

where u, and u; correspnd to the potentials of the boundary and interior
nodesrespectively. Dierentiating D[u;] with respect to u; and nding the
critical point, yields

Liui = RT Up, (7)
which is a system of linear equationswith ju;j unknowns. If the graph is
connected,or if every connectedcomponert contains a boundary node, then
equation (7) will be nonsingular[17]. Although various methods exist for
solving a systemof linear equations[25, 26|, the conjugate gradiert method
is arguably the best in terms of speed and parallelization [27]. Conjugate
gradierts requiresonesparsematrix multiply per iteration, which is bounded
above by dmnaxS, Where dnax is the maximum degreeof an interior node and
s is the cardinality of the set of interior nodes. Assuminga constart number
of iterations are required for corvergenceand that the maximum degreeis
independent of the number of nodes (e.g., a 4-connectedlattice), the time
complexity of the algorithm is O(s).

Combinatorial harmonic functions arisein a wide variety of applications,
playing a certral role in systemsof springs[7], the stressand strain of con-
nectedbeams[7], Markov chains[28] and electrical circuits [28]. As an exam-
ple, we will examinethe application domain of electrical circuits. The other
conexts are essetially identical, di ering mainly in languageand physical
meaning of the respective equations(see[7] for a full discussion).The elec-
trical metaphor, however, is of greater interest in the presen cornext since
thereis somechancethat a VLSI implemertation of thesemethodsis possible
in terms of the equivalert circuits preserted here.

With the notation above, the three main laws governing circuit theory
may be written as

Ay = f (Kirchho 's Current Law) (8)
Cp= y (Ohm's Law) (9)
p= AX (Kirchho 's Voltage Law); (20)

wheref represets current sourcesat the nodes,p the potential drop (voltage)
acrossa branch, x is the potertial at a node andy is the current through a
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Operator | Vector calculus| Combinatorial
Gradiert r A
Divergence r AT

Curl ror K
Laplacian rr ATA
Beltrami rCr ATCA

Table 1: Correspondencebetweencortinuum di erential operatorsand com-
binatorial di erential operatorson graphs. C represems a constitutive ma-
trix relating ux to ow, e.g., a conductivity tensor, a di usion tensor, a
thermal conductivity, a stress-straintensor, or, in the cortext of di erential
geometry a metric tensor. A is the incidencematrix of the graph represett
ing the topology of the problem. K is the cycle-edgematrix of the graph

[71.

branch. The weights on a branch de ning C are given by the conductance
of the branch (i.e., the reciprocal of the resistance).
The power, P, assaiated with a circuit may be written as

— 1 T 1, — 1 T

P—EyC y—éx Lx (11
A comparisonof equations(5) and (11) demonstratesthat the set of electric
potertials at the nodesof a circuit is a discreteharmonic function, i.e., those
nodes with a xed potential due to voltage sourcesor grounding are the
boundary nodes,the nodeswithout a xed potertial are the interior nodes.
Furthermore, the interior nodesassumepotentials that minimize (5) (see[28]
for extensiwe discussiorof electricalnetworks, randomwalks and the Dirichlet
integral). If onewereto build a circuit with the sametopology as a graph,
with appropriate voltage sourcego encale the boundary valuesand resistors
to encalethe weiglts, the physical solution (i.e., a minimum energysolution)
to the interpolation problem would be exactly equalto the nodal potertials
of ewery interior node. Figure 1 illustrates the circuit correspnding to a
graph interpolation problem.



Equation Continuum Graph

KVL rv==E Ax = e

_ d _
KCL r =9 | ATy=f
Ohm's Law _E=1 Ce=y

Dirichlet Integral %r\ jr uj2d | 2xTATCAX

Table 2: Correspndencebetweencortinuum di erential equationsand com-
binatorial di erential equationson graphs. Kirchho 's current law is a quasi-
static (2 = 0) approximation to Maxwell's Equationr  E = @ Kirch-
ho 's voltage law follows from the de nition of electric eld asthe gradiert
of potertial. Ohm's Law is a constitutive (phenomenological)law asserting
a presumedlinear dependencebetweenvoltage and currert.

. . .
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Figure 1: Interpolating on a graph with a harmonic is equivalent to setting
voltage sourcegand grounds)at somenodesand readingo the potertials at
nodeswhich arenot xed. (a) A graphwith known valueson somenodesand
unknown values (indicated with a "?") on other nodes. (b) The equivalent
circuit that would produce potertials on the nodesequalto those found by
the interpolation method.



3 Results

In this sectionwe demonstratethe interpolation algorithm in the context of
image processing.

3.1 Space-variant (foveal) images

In orderto demonstratethe useof the interpolation algorithm on an arbitrary
graph, we employ an imagerepreseted on a graph patterned after the space-
variant sampling of the primate foveal visual system[1l]. The Lena image
wasimp orted to the space-ariant graph structure by consideringthe space
variant point set as a resampling of a Cartesian raster and applying the
elliptical Gaussian lters described in [29] (see[30] for more details on this
method as applied to space-ariant imaging). Other methods for importing
a Cartesianimageto a space-ariant graph could alsobe used,aslong asthe
output of the importing algorithm was an image eld on nodes as opposed
to facesor other componerts of the graph.

Here, we have removed image data in a circular region and performed
the interpolation obtained via (7) to Il in the lost values. No weighting
was usedto compensatefor the changinglength (if embeddedin a Euclidean
plane) of the edges. In other words, the interpolation was isotropic in the
sensethat every edgehad unit length (correspnding to unit resistorsin the
circuit analogy). The results may be seenin Figure 2. One can seethat the
region of the graph for which image values were removed take valuesthat
smaothly interpolate betweenthe dark and light regions. Howewer, sinceno
image information is encaled into the structure (i.e., uniform weighs), the
interpolation algorithm simply lls in the regionwith a smooth solution. In
the next section, it will be shavn that encaling image information in the
weights and performing an anisotropic interpolation providesa solution that
reseniles the missing (original) valuesmore than the isotropically interpo-
lated solution.

3.2 Anisotropic interp olation

Anisotropic interpolation may be thought of asweighted interpolation or as
nding the potertials in a resistive network in which the resistor valuesare
nonuniform. It is possibleto return to the missingdata situation of Figure 2
and perform anisotropic interpolation using weights derived from the image
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Figure 2: Interpolation of imagedata on a foveal meshfrom which a hole has
beencut out. (a) Underlying foveal graph structure. (b) The Lenaimage
imported onto the foveal structure. (c) Foveal imagewith a hole arbitrarily
cut out of it. Underlying graph structure is shovn inside the hole. (d) Foveal
imagewith interpolated data in the hole.

10



values (acquired before the data was removed). We employed a Gaussian
weighting function [3]]

Wi = exp( jli Ijj); (12)

where |; is the image intensity at node (pixel) i and is a dimensionless
parameterthat cortrols the se\erity of the anisotropy induced by the image

intensity. Before using equation (12) the intensity gradierts were histogram

equalized,sinceit wasdeterminedempirically that if they werenot equalized,
di erent valuesof the parameterswould berequiredto producesimilar results

for di erent images.

Weighting the space-ariant meshin accordancewith (12) allows for a
more accuratereconstruction of the missingdata values,as seenin Figure 3.

Building a weighted (i.e., anisotropic) graph for an image using equation
(12) allowsfor a smaoothed reconstructionof the original imagevia anisotropic
interpolation from the sampling of a small number of points. Theserecon-
structed imagesresenble those produced by anisotropic di usion methods.
This is becausethe solution to the Laplace equation is the steady state of
the di usion equationwith speci ed boundary conditions [2§]. The primary
di erence betweendi usion-based methods of imageenhancemenand those
preserted hereis that di usion methods approad zero (or constart) when
run for in nite time, sinceDirichlet boundary conditionsare usually not spec-
ied in diusion approadesto image processing.Becauseof this, di usion
methods (both isotropic and anisotropic) require a stopping condition, while
the presen method solvesdirectly for a time-independert solution.

This relationship may be seeneven more clearly by comparingthe equiv-
alert circuit for our interpolation algorithm and the equivalert circuit pre-
serted for anisotropicdi usion by Peronaand Malik [31]. If onereplacedthe
voltage sourceat every node in our circuit with an appropriately chargedca-
pacitor, then the Perona-Malik equivalert circuit would be obtained exactly.
Insofar as similar results are produced for image enhancemen tasks with
(steady state) anisotropic di usion and the presen method, two advantages
of anisotropic interpolation presen themseles over di usion. The rst of
theseis that the solution to the Laplace equation is a steady state solution,
while the solution to the di usion equation dependson time. Therefore,we
have no needto iterate and, thus, we circumven the needto choosea stop-
ping point for the di usion. Secondly we can smaoth lessor smooth more
in di erent areasof the image by decreasingthe sampling density in areas
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Figure 3: Anisotropic interpolation of imagedata on a foveal meshwith the
samehole asin Figure 2 hasbeencut out. Weights were determined using
= 30 (seetext for details)

where we desiremore smoothing and increasingit in areaswhere we desire
lesssmaothing.

Figure 4 demonstratesresultsthat are visually comparableto anisotropic
di usion applied to the sameimage. To generateFigure 4, a 4-connected
lattice was generatedwith weights obtained from equation (12) basedon the
Lenaimage. Samplesverechosenfrom relatively uniform areasby computing
the squareroot of the sum of the edgegradierts incidernt on ead node. All
nodeswith a value below a threshold were selectedas samplenodesto have
their values xed. The remaining nodes were anisotropically interpolated,
giventhe xed set. One can seethat sharp boundariesare maintained, due
to the encaling of imageinformation with weights. Areas of the imagewith
high variability (e.g., the feathers)are smoothed considerablysincevery few
samplesweretaken, while areaswith initially low variability remain uniform.

Of course,it is possibleto interpolate by a variety of samplingstrategies.
Figure 5 illustrates the results of di erent structured sampling sdhemes,as
well as the exibilit y to smooth more or smooth lessin di erent areasof
the image. Using the sameweights asin Figure 4, but a di erent choice of
samples,it is possibleto keepthe certer of the image true to the original
while di using out the badkground or vice versa

12
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Figure 4: Anisotropic interpolation of an image basedon very sparsesam-
pling. (a) Original Lena image. (b): Magnitude of image gradiert. (c):
Samplestaken from lowest magnitude points. (d): Anisotropically interpo-
lated image.
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Figure 5: Spatially nonuniform samplingallows for more\di usion" in some
areasover others. This gure demonstratesthe e ects of two di erent spatial
sampling regimeson the anisotropic interpolation of the Lenaimage.
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4 Conclusion

We have posedthe question of how to interpolate nodal valueson a graph
and proposeda solution basedon solving the combinatorial Dirichlet prob-
lem. This interpolation method has desirable properties as a result of the
mean value theorem and the maximum principle. Furthermore, the method
naturally incorporatesa metric into the interpolation if anisotropic interpo-
lation is desired. Finally, a circuit analogywas presetted which both a ords
additional intuition into the processas well as holding open the possibility
for a VLSI implemertation.

Applications of this method to image processingdemonstrate its use
for lling in missingvaluesin a space-ariant image and in the anisotropic
smoothing of Cartesianimages. Further applicationsinclude a smaothing op-
erator for multiresolution reconstruction of graph-basedpyramids or three-
dimensionalinterpolation for surfaces. Graphs are general structures that
may arisein three dimensionsfor the purposeof computer graphics[32] or
in an arbitrary number of dimensionsfor data clustering [33]. Since this
interpolation method dependsonly on the topology of the structure and not
any information about the dimensionality of the spacein which it is embed-
ded,onemay interpolate on graph structuresexisting in arbitrary dimensions
possessin@n arbitrary metric.
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