Fastergraph-theoreticamageprocessingvia
small-world and quadtreetopologies

Leo GradyandEric L. Schwartz

Abstract— Numerical methodsassociatedwith graph-theoretic
image processingalgorithms often reduce to the solution of a
large linear system.We show here that choosinga topology that
yields a small graph diameter can greatly speedup the numerical
solution. As a proof of concept,we examinetwo imagegraphsthat
presewe local connectvity of the nodes(pixels) while drastically
reducing the graph diameter. The rst is based on a “small-
world” modi cation of a standard 4-connectedattice. The second
is basedon a quadtree graph. Using a recently described graph-
theoretic image processingalgorithm we shaow that large speed-
up is achieved with a minimal perturbation of the solution when
thesegraph topologiesare utilized. We suggestthat a variety of
similar algorithms may also bene t from this approach.

|. INTRODUCTION

RADITIONAL solution methodsto partial differential

equations(e.g., nite differences, nite elements)often
culminatein the solutionof a large, sparsesymmetricsystem
of linear equationswhere the sparsity patternof the matrix
corresponddirectly to the topology of the sampling grid.
Standarddiscretizationsof 2D physical systems(e.g., heat
ow, electrostatic elds), usually choosea topology based
on a four- or eight-connectedyrid [1]. Graph-basedmage
processingalgorithms [2], [3], [4] typically take the pixels
as the node set and connectthe nodeslocally with a four-
or eight-connecteddge set. Matrices associatedvith these
graphs(e.g., the Laplacian,adjaceng, or incidence matrix)
possess sparsitypatternde ned by the graphtopology [5],
[6], asillustratedin Figure 1. Although a lattice is locally
connectedand shift-invariant (asidefrom the borders),there
is no fundamentalkreasonwhy an image shouldbe restricted
to this connectiity. We shav here that alternate methods
of choosingan image topology may signi cantly increase
the speedand performanceof graph-basedalgorithms that
employ the conjucategradientamethodto solve a setof linear
equations.Although some algorithms explicitly require the
solution to a sparsesystemof equations[7], it was pointed
out in [8] that parabolicPDEs(e.g.,the anisotropicdiffusion
of [9]) may be more ef ciently placedin this form by using
thebackward Eulerapproximatiorto the time derivative rather
thanthe forward Euler approximation.
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Fig. 1. (a,b) Example graphs. (c,d) Sparsity pattern of corresponding
adjaceng matrices.

A graph is a pair G = (V;E) with verticesv 2 V and
edgese2 E  V V. An edge,e, spanningtwo vertices,v;
andv;, is denotedoy g; . Letn = jVj andm = jEj wherej j
denotescardinality A weighted graph hasa value (typically
nonngative and real) assignedo eachedgecalled a weight.
The weight of edgee; , is denotedby w(e; ) or w; .

Conjuaate gradientsis generally the algorithm of choice
for solving a large, sparse,systemof linear equations[10].
When applied to a matrix generatedas a result of graph
topology(e.g.,Laplacianmatrix, adjaceng matrix), it hasbeen
shavn [11], [12] thattherateof convergencefor the conjucate
gradientsmethodis a function of the graph diameter. The
diameterof a graph,G, is de ned formally as

diameter(G) = max( min_(9(vi;Vv;))); Q)

ViV 2V
where g(vi;Vv;) denotesthe number of nodestraversedin
the shortestpath betweentwo nodes(i.e., the length of the
minimal geodesicbetweennodesyv; and v;j) [13]. In other
words, the graphdiameteris the maximumnumberof nodes
traversed along an optimal path connectingtwo arbitrary
nodes.



(a) Diameter= 150

(c) Diameter= 46 (d) Diameter= 22

Fig. 2. (a) 75 75 Lattice substrate(b) Delaunaytriangulationsubstrate(c) Smallworld graphbuilt on a lattice substratedby adding50 randomedges(d)
Small world graphbuilt on a Delaunaytriangulationsubstratedy adding50 randomedges.

Here, we presenttwo “small diameter”image topologies the systemof linear equationsgiven by
with desirablepropertiesor graph-baseimageanalysisalgo-
rithms: Lx = d; @

Small world [14]: A small numberof edges(e.g., about whereL is theweightgdLapIacianmatrix [16] de ned by
1% of the original numberof edges)readdedto E, with >d ifi=j:
the nodesto be connectedchosenat random. L. = w(e;) ife 2E: ©)
Multi-resolution quad-tree:A multi-resolutionquad-tree e s ! e
is usedto representhe imagewith explicit connections 0 otherwise
within (lattice) and acrosspyramid layers. Effectively, andd denotesthe vector of (weighted)nodedegree Speci -

this introducesshort pathsvia short-circuitsthroughthe  cally, d, denotesthe weighteddegreeof vertex v;
higher levels of the quad-tree. X

- d= w(g) 8e 2E: 4)
We demonstratehat both approachesigni cantly reducethe o
graph diameterand, as expected,improve the convergence
rate of graph-basedmage processingalgorithmsrequiring a
solution by conjucpte gradients. Il. CONVERGENCE OF THE CONJUGATE GRADIENT
A recently developed image segmentationalgorithm, the METHOD

isoperimetric algorithm [7], [15], is usedto demonstrate  Whenusinga graph-theoreticatastructure,eachiteration
the effects of the proposediopologieson the corvergenceof of conjugategradientd10] propagtesinformationalongpaths
conjucate gradientsand on segmentationquality. The main that are longer by one additional edge. For example, if Xq
computationatequiremenbf this algorithmis the solutionto  representsan impulse function (i.e., Xxo = [1;0;:::;0]", a
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Fig. 3. lIterationsrequiredto corverge on a solution for the isoperimetric
algorithm with conjuaate gradientsas the numberof random edgesadded
increasedor a 128 128 4-connectedattice, weightedto re ect the blood
cellsimageof Figure 4. The dashedine representshe numberof iterations
requiredfor corvergencewith the unaltered4-connectedopology

nonzerovalue only at nodevp), then that impulsewill have
spreadonly k edgesafter k iterations. This analogy allows
for the interpretationof the conjugate gradientsmethodas a
mixing procesq11], [12].

This analogy can be made explicit by consideringthe
solution to a diffusion processover a graph (e.g., discrete
lattice)with discretetime stepsFor thegraphLaplacianmatrix
[16], L, and currentstate,X;, the discretediffusion equation
may be written

Xi+1 = Xj +

tLxi: (5)

Eachiteration,X;, is the sumof a polynomialin L multiplied
by the vector representinghe initial statexg.

This analogybetweenthe conjugate gradientsmethodand
mixing processessuggeststhat the rate of corvergence of
the conjucate gradientsmethodwill be a function of graph
diameter[11]. In other words, since each iteration of the
conjucate gradientsmethod only spreadsinformation along
one additionaledgewith eachiteration, the algorithm cannot
converge, in general, until the information has spreadto
all nodesin the graph. Therefore,the minimum number of
iterationsis the length of the longestoptimal path between
ary two nodes(i.e., the graphdiameter).

We demonstratéwo proposaldor choosinga graphtopol-
ogy that increasesthe corvergence rate of the conjucate
gradientmethod. The rst is to choosea locally connected
topology (e.g., 4-lattice) and add in a small number of
random edges. The secondis to constructa corventional
guad-treeover the image graph, allowing explicit connec-
tions betweenlevels of the tree. We have constructedan
image graph MATLAB toolbox, which is publicly available
(the Graph Analysis Toolbox (http://eslab.bu.edu:
/software/graphanalysis )). All gures in this paper
are representedvith the scripts (and correspondingpublic
domainsourceimages)that createdthem at this location.

To demonstratéhe (heuristic)validity of the “small-world”
approachwe considerthe following questionsfor the cases
of random,and regular (quad-tree)small-world topologies.
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Fig. 4. (a)Original (input) image.(b) Segmentationobtainedwith unaltered
4-connectedopology (= 95, stop = 10 °). (c) Segmentationobtained
with the addition of 200 randomedges( = 95, stop = 10 °). Preceding
parametersefer to the weighting functionin [7]
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Fig. 5. Topology of the connectedoyramid graphwith 4-connecteda), 8-connectedb), andradius= 5 connectedc) within-level connections.
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Fig. 6.

(a) Number of iterationsrequiredfor corvergenceof conjugate gradientsfor equation(2) on a 512

(b)

512 unweightedlattice as the numberof

levelsin the pyramid are added.Dashedine representshe numberof iterationsrequiredto corverge for a simple (non-p/ramid) lattice. (b) Total numberof

multiply  operationgequiredto performconjugategradientsasthe numberof
requiredfor a simple (non-p/ramid) lattice.

1) What is the effect of the alteredtopology on the con-
vergencerate of conjugate gradients?

2) Whatis the effect of the alteredtopologyon the number
of computations?

3) How doesthe topology changeperturbthe solution?

I1l. SMALL WORLDS

In theirlandmarkpaper14], WattsandStrogatzde ne what
they term a “small world” topology basedon the six degrees
of separationor small world phenomenorfound in social
networks. The de ning property of a small world network is
that it is locally connected(under suitable de nition) while
maintaininga small graphdiameter

Watts and Strogatz demonstratethat a graph with these
properties may be obtained by “interpolating” betweena
typical, locally connectedgraph and the randomgraphs rst
de ned by Erddos and Reryi [17], [18]. Most remarkably
Watts demonstrate$19] that a locally connectedgraph (the
substrate graph)may be madeinto a small world graph(i.e.,
given a small diameter)with the addition of a small number
of randomedgesFigure2 shows a lattice (4-connectedyraph
anda Delaunaytriangulationafter additionof a smallnumber
of randomedges.

Basedon the “small-worlds” intuition, the graphdiameteris
dramaticallydecreasetby the additionof thesenew edgesand

levelsincreasesDashedine representshe numberof multiply ~ operations

the corvergencerate of the iteratve methodshould substan-
tially increase Furthermorethe additionalcomputationatost
dueto theseedgesperiteration,shouldbe negligible sincethe
numberof newv edgesis small. Finally, sincethe numberof
long-rangeedgesis “small”, we conjecturethat the difference
betweenthe solutionto the problemusing the “small-world”
formulation and the solution to the original problem,is also
small.

A. Results

The numberof multiply  operationsper iterationin the
conjucate gradientamethodis equalto the numberof nonzero
elementsin the matrix. In the caseof a 4-connectedattice,
the numberof nonzeroelementsp, in the Laplacianmatrix
is p 5n. Every random edge addedincurs 2 additional
nonzercelementgdueto symmetry).Therefore the amountof
computationrequired(i.e., numberof multiply ~ operations)
periterationusinga smallworld graphwith a few extra edges
is essentiallythe sameasthe computationrequiredto process
on the substrategraph.

Sincethe solution, x, clearly changeswith a changein the
underlyinggraph (i.e., a changein topology), it is useful to
examine the effect of adding randomedgeson the solution.
For purposeof applyingtheisoperimetricalgorithm[7] to an



image,the effect of a signi cant numberof edges(asregards
the numberof iterationsrequiredfor corvergence)is shavn in
Figure 4 to have a minimal effect on the nal solution. This
is expected,since adding several hundrededgesto an image
of size128 128 (4n? = 64K) is lessthanone percent.

IV. QUAD TREE

We rst construcia pyramidof progressiely coarseimages
andlink themwith the original in a typical quadtreeopology
We term this a connectedpyramid (seeFigure5).

In order to perform graph-basedmage processing,the
connectionswithin layersmustalso be madeexplicit. Taking
the within layer topologyto be the standard4/8-connectear
a radially connectedtopology [2] resultsin the three layer
connectecpyramidsin Figure5.

Although it is possibleto de ne hierarchicalarrangements
of arbitrarygraphs(e.g.,throughuseof maximalindependent
sets[20]), we focushereon the standardCartesiarlattice. For
purposef simplicity, the valuesat each(parent)nodein the
higherlevel is taken asthe averageof the (child) nodeson the
lower level.

The graph diameterin an n  n Cartesianlattice is 2n,
while the addition of each new level causesthe graph to
have half the diameterof the previous level, to a minimum
diameterof 2log,(n) for a full quadtreepyramid. Therefore,
despitethe fact that the addition of new levels requiresthe
solution of (2) for more nodes(to a limit of %’n n), the
graphdiameterdecreasedramaticallywith theadditionof new
levels, suggestingthat conjucate gradientsshould corverge
faster In the next section, the effect of decreasinggraph
diameteris shavn to almost entirely compensatefor the
additionalnodesin termsof computationakf ciency.

A. Speed

In order to determinethe mitigating effect of decreased
graphdiameteron the solutionto (2), we varied the number
of levelsusedin a512 512 lattice with uniform weightsand
measuredhe numberof iterationsrequiredfor convergence
of the conjucate gradientsmethod. However, this measure
can be misleading since the number of computationsper
iteration increasesas the cardinality of the node and edge
setsincreasesln orderto capturethe computationakf ciency
of conjugate gradientsin solving (2) on a lattice and a
pyramid, the number of multiply operationsrequired to
solve (2) was also calculated.Figure 6 demonstrateshat
the numberof iterationsrequiredfor corvergencedecreases
signi cantly as new levels are incorporatedinto the graph,
such that the numberof iterationsrequiredfor corvergence
for afull pyramidis slightly greaterthanhalf thatrequiredfor
a lattice. The computationakffect of reducingthe numberof
iterationsrequiredfor corvergenceis alsodisplayedin Figure
6, demonstratingthat the improved segmentationsobtained
from a pyramid architectureincur less than 7% additional
computationsThis result representsigni cant improvement
over the additional computationsof 33% expectedby a an
algorithmthatis linear in the numberof nodes.
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Fig. 7. Comparisorof segmentationproducedoy lattice-base@ndpyramid-

basedsoperimetricalgorithmin responseo increasedilur. Left: Imagewith

increasedvariance Gaussiankernel (1-7 pixel variance).Middle: Lattice-

basedsegmentation( = 95, stop = 1:0 10 %). Right: Pyramid-based
segmentation( = 180, stop = 2.0 10 %).

B. Sgmentationquality

Due to the additionallevels in a connectedoyramid, more
global information is usedby the isoperimetricalgorithmin
determininggood partitions. This additional global informa-
tion generatesmproved localization of blurred boundaries,
resultingin higher quality edgedetection.

Sincethe connectedpyramid basedsoperimetricalgorithm
males better use of blurred edges,we expect that the nal
segmentationon naturalimageswill be improved. In Figure
8 the lattice-basedand pyramid-basedsoperimetricsgmen-
tationsare comparedor several naturalimages.One cansee
thatdif cult edgesarebetterlocalizedwith the pyramid-based
algorithm.

V. CONCLUSION

Our purposen this papemwasto usetheconnectiorbetween
conjucate gradientsand a mixing (i.e., diffusion) processto



(a) ESLab0002 (b) Lattice (c) Pyramid (d) ESLab0004 (e) Lattice (f) Pyramid
(g) ESLab0027 (h) Lattice (i) Pyramid (j) ESLab0031 (k) Lattice () Pyramid
Fig. 8. Comparisonof images sggmentedwith pyramid ( = 180, stop = 10 °) and lattice ( = 95, stop = 10 5) basedisoperimetric

algorithms.More examplesof the sggmentationproducedby the pyramid-basedalgorithmmay be found at http://eslab.bu.edu/publications/
grady2004faster/
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