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Fastergraph-theoreticimageprocessingvia
small-world andquadtreetopologies

Leo GradyandEric L. Schwartz

Abstract— Numerical methodsassociatedwith graph-theoretic
image processingalgorithms often reduce to the solution of a
large linear system.We show here that choosinga topology that
yields a small graph diameter can greatly speedup the numerical
solution. As a proof of concept,weexaminetwo imagegraphsthat
preserve local connectivity of the nodes(pixels) while drastically
reducing the graph diameter. The �rst is based on a “small-
world” modi�cation of a standard 4-connectedlattice. The second
is basedon a quadtreegraph. Using a recently describedgraph-
theoretic image processingalgorithm we show that large speed-
up is achieved with a minimal perturbation of the solution when
thesegraph topologiesare utilized. We suggestthat a variety of
similar algorithms may also bene�t fr om this approach.

I . INTRODUCTION

T RADITIONAL solution methodsto partial differential
equations(e.g., �nite differences,�nite elements)often

culminatein thesolutionof a large,sparse,symmetricsystem
of linear equationswhere the sparsitypatternof the matrix
correspondsdirectly to the topology of the sampling grid.
Standarddiscretizationsof 2D physical systems(e.g., heat
�o w, electrostatic�elds), usually choosea topology based
on a four- or eight-connectedgrid [1]. Graph-basedimage
processingalgorithms [2], [3], [4] typically take the pixels
as the node set and connectthe nodeslocally with a four-
or eight-connectededgeset. Matrices associatedwith these
graphs(e.g., the Laplacian,adjacency, or incidencematrix)
possessa sparsitypatternde�ned by the graphtopology [5],
[6], as illustrated in Figure 1. Although a lattice is locally
connectedand shift-invariant (asidefrom the borders),there
is no fundamentalreasonwhy an imageshouldbe restricted
to this connectivity. We show here that alternatemethods
of choosing an image topology may signi�cantly increase
the speedand performanceof graph-basedalgorithms that
employ theconjugategradientsmethodto solve a setof linear
equations.Although some algorithms explicitly require the
solution to a sparsesystemof equations[7], it was pointed
out in [8] that parabolicPDEs(e.g., the anisotropicdiffusion
of [9]) may be more ef�ciently placedin this form by using
thebackwardEulerapproximationto thetime derivative rather
than the forward Euler approximation.
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Fig. 1. (a,b) Example graphs. (c,d) Sparsity pattern of corresponding
adjacency matrices.

A graph is a pair G = (V; E) with verticesv 2 V and
edgese 2 E � V � V . An edge,e, spanningtwo vertices,vi

andvj , is denotedby eij . Let n = jV j andm = jE j wherej � j
denotescardinality. A weighted graph hasa value(typically
nonnegative and real) assignedto eachedgecalleda weight.
The weight of edgeeij , is denotedby w(eij ) or wij .

Conjugate gradientsis generally the algorithm of choice
for solving a large, sparse,systemof linear equations[10].
When applied to a matrix generatedas a result of graph
topology(e.g.,Laplacianmatrix,adjacency matrix), it hasbeen
shown [11], [12] that therateof convergencefor theconjugate
gradientsmethod is a function of the graph diameter. The
diameterof a graph,G, is de�ned formally as

diameter(G) = max( min
v i ;v j 2 V

(g(vi ; vj ))) ; (1)

where g(vi ; vj ) denotesthe number of nodes traversed in
the shortestpath betweentwo nodes(i.e., the length of the
minimal geodesicbetweennodesvi and vj ) [13]. In other
words, the graphdiameteris the maximumnumberof nodes
traversed along an optimal path connecting two arbitrary
nodes.
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(a) Diameter= 150 (b) Diameter= 41

(c) Diameter= 46 (d) Diameter= 22

Fig. 2. (a) 75 � 75 Lattice substrate.(b) Delaunaytriangulationsubstrate.(c) Small world graphbuilt on a lattice substrateby adding50 randomedges.(d)
Small world graphbuilt on a Delaunaytriangulationsubstrateby adding50 randomedges.

Here, we presenttwo “small diameter” image topologies
with desirablepropertiesfor graph-basedimageanalysisalgo-
rithms:

� Small world [14]: A small numberof edges(e.g.,about
1% of theoriginal numberof edges)areaddedto E , with
the nodesto be connectedchosenat random.

� Multi-resolution quad-tree:A multi-resolutionquad-tree
is usedto representthe imagewith explicit connections
within (lattice) and acrosspyramid layers. Effectively,
this introducesshort pathsvia short-circuitsthroughthe
higher levels of the quad-tree.

We demonstratethat both approachessigni�cantly reducethe
graph diameterand, as expected,improve the convergence
rate of graph-basedimageprocessingalgorithmsrequiring a
solutionby conjugategradients.

A recently developed image segmentationalgorithm, the
isoperimetric algorithm [7], [15], is used to demonstrate
the effects of the proposedtopologieson the convergenceof
conjugate gradientsand on segmentationquality. The main
computationalrequirementof this algorithmis the solutionto

the systemof linear equationsgiven by

Lx = d; (2)

whereL is the weightedLaplacianmatrix [16] de�ned by

L v i v j =

8
><

>:

di if i = j ;
� w(eij ) if eij 2 E;
0 otherwise;

(3)

andd denotesthe vectorof (weighted)nodedegree. Speci�-
cally, di denotesthe weighteddegreeof vertex vi

di =
X

eij

w(eij ) 8 eij 2 E: (4)

I I . CONVERGENCE OF THE CONJUGATE GRADIENT

METHOD

Whenusinga graph-theoreticdatastructure,eachiteration
of conjugategradients[10] propagatesinformationalongpaths
that are longer by one additional edge.For example, if x0

representsan impulse function (i.e., x0 = [1; 0; : : : ; 0]T , a
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Fig. 3. Iterationsrequiredto converge on a solution for the isoperimetric
algorithm with conjugate gradientsas the numberof randomedgesadded
increasesfor a 128 � 128 4-connectedlattice, weightedto re�ect the blood
cells imageof Figure4. The dashedline representsthe numberof iterations
requiredfor convergencewith the unaltered4-connectedtopology.

nonzerovalue only at nodev0), then that impulsewill have
spreadonly k edgesafter k iterations.This analogyallows
for the interpretationof the conjugate gradientsmethodas a
mixing process[11], [12].

This analogy can be made explicit by considering the
solution to a diffusion processover a graph (e.g., discrete
lattice)with discretetimesteps.For thegraphLaplacianmatrix
[16], L , and currentstate,x i , the discretediffusion equation
may be written

x i +1 = x i + � tLx i : (5)

Eachiteration,x i , is the sumof a polynomial in L multiplied
by the vector representingthe initial statex0.

This analogybetweenthe conjugate gradientsmethodand
mixing processessuggeststhat the rate of convergence of
the conjugate gradientsmethodwill be a function of graph
diameter [11]. In other words, since each iteration of the
conjugate gradientsmethod only spreadsinformation along
oneadditionaledgewith eachiteration, the algorithmcannot
converge, in general, until the information has spread to
all nodesin the graph. Therefore,the minimum numberof
iterations is the length of the longestoptimal path between
any two nodes(i.e., the graphdiameter).

We demonstratetwo proposalsfor choosinga graphtopol-
ogy that increasesthe convergence rate of the conjugate
gradientmethod.The �rst is to choosea locally connected
topology (e.g., 4-lattice) and add in a small number of
random edges.The second is to construct a conventional
quad-treeover the image graph, allowing explicit connec-
tions betweenlevels of the tree. We have constructedan
image graph MATLAB toolbox, which is publicly available
(the Graph Analysis Toolbox (http://eslab.bu.edu:
/software/graphanalysis )). All �gures in this paper
are representedwith the scripts (and correspondingpublic
domainsourceimages)that createdthemat this location.

To demonstratethe (heuristic)validity of the “small-world”
approach,we considerthe following questionsfor the cases
of random,andregular (quad-tree)small-world topologies.

(a)

(b)

(c)

Fig. 4. (a) Original (input) image.(b) Segmentationobtainedwith unaltered
4-connectedtopology (� = 95, stop = 10� 5 ). (c) Segmentationobtained
with the additionof 200 randomedges(� = 95, stop = 10� 5 ). Preceding
parametersrefer to the weighting function in [7]
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(a) (b) (c)

Fig. 5. Topologyof the connectedpyramid graphwith 4-connected(a), 8-connected(b), andradius= 5 connected(c) within-level connections.

(a) (b)

Fig. 6. (a) Numberof iterationsrequiredfor convergenceof conjugate gradientsfor equation(2) on a 512 � 512 unweightedlattice as the numberof
levels in the pyramid areadded.Dashedline representsthe numberof iterationsrequiredto converge for a simple(non-pyramid) lattice. (b) Total numberof
multiply operationsrequiredto performconjugategradientsasthenumberof levels increases.Dashedline representsthenumberof multiply operations
requiredfor a simple (non-pyramid) lattice.

1) What is the effect of the alteredtopology on the con-
vergencerateof conjugategradients?

2) What is theeffect of thealteredtopologyon thenumber
of computations?

3) How doesthe topologychangeperturbthe solution?

I I I . SMALL WORLDS

In their landmarkpaper[14], WattsandStrogatzde�ne what
they term a “small world” topologybasedon the six degrees
of separationor small world phenomenonfound in social
networks. The de�ning propertyof a small world network is
that it is locally connected(under suitablede�nition) while
maintaininga small graphdiameter.

Watts and Strogatz demonstratethat a graph with these
properties may be obtained by “interpolating” between a
typical, locally connectedgraphand the randomgraphs�rst
de�ned by Erdös and Renyi [17], [18]. Most remarkably,
Watts demonstrates[19] that a locally connectedgraph (the
substrate graph)may be madeinto a small world graph(i.e.,
given a small diameter)with the addition of a small number
of randomedges.Figure2 shows a lattice(4-connected)graph
anda Delaunaytriangulationafteradditionof a small number
of randomedges.

Basedon the“small-worlds” intuition, thegraphdiameteris
dramaticallydecreasedby theadditionof thesenew edgesand

the convergencerate of the iterative methodshouldsubstan-
tially increase.Furthermore,theadditionalcomputationalcost
dueto theseedges,periteration,shouldbenegligible sincethe
numberof new edgesis small. Finally, since the numberof
long-rangeedgesis “small”, we conjecturethat the difference
betweenthe solution to the problemusing the “small-world”
formulation and the solution to the original problem,is also
small.

A. Results

The numberof multiply operationsper iteration in the
conjugategradientsmethodis equalto thenumberof nonzero
elementsin the matrix. In the caseof a 4-connectedlattice,
the numberof nonzeroelements,p, in the Laplacianmatrix
is p � 5n. Every random edge added incurs 2 additional
nonzeroelements(dueto symmetry).Therefore,theamountof
computationrequired(i.e., numberof multiply operations)
per iterationusinga smallworld graphwith a few extra edges
is essentiallythe sameasthe computationrequiredto process
on the substrategraph.

Sincethe solution,x, clearly changeswith a changein the
underlyinggraph (i.e., a changein topology), it is useful to
examine the effect of adding randomedgeson the solution.
For purposesof applyingthe isoperimetricalgorithm[7] to an
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image,the effect of a signi�cant numberof edges(asregards
thenumberof iterationsrequiredfor convergence)is shown in
Figure 4 to have a minimal effect on the �nal solution.This
is expected,sinceaddingseveral hundrededgesto an image
of size128� 128 (4n2 = 64k) is lessthanonepercent.

IV. QUAD TREE

We�rst constructapyramidof progressively coarserimages
andlink themwith theoriginal in a typical quadtreetopology.
We term this a connectedpyramid (seeFigure5).

In order to perform graph-basedimage processing,the
connectionswithin layersmustalsobe madeexplicit. Taking
the within layer topologyto be the standard4/8-connectedor
a radially connectedtopology [2] results in the three layer
connectedpyramidsin Figure5.

Although it is possibleto de�ne hierarchicalarrangements
of arbitrarygraphs(e.g.,throughuseof maximal independent
sets[20]), we focushereon thestandardCartesianlattice.For
purposesof simplicity, the valuesat each(parent)nodein the
higherlevel is takenastheaverageof the(child) nodeson the
lower level.

The graph diameterin an n � n Cartesianlattice is 2n,
while the addition of each new level causesthe graph to
have half the diameterof the previous level, to a minimum
diameterof 2 log2(n) for a full quadtreepyramid. Therefore,
despitethe fact that the addition of new levels requiresthe
solution of (2) for more nodes(to a limit of 4

3 n � n), the
graphdiameterdecreasesdramaticallywith theadditionof new
levels, suggestingthat conjugate gradientsshould converge
faster. In the next section, the effect of decreasinggraph
diameter is shown to almost entirely compensatefor the
additionalnodesin termsof computationalef�ciency.

A. Speed

In order to determinethe mitigating effect of decreased
graphdiameteron the solution to (2), we varied the number
of levelsusedin a 512� 512 latticewith uniform weightsand
measuredthe numberof iterationsrequiredfor convergence
of the conjugate gradientsmethod. However, this measure
can be misleading since the number of computationsper
iteration increasesas the cardinality of the node and edge
setsincreases.In orderto capturethecomputationalef�ciency
of conjugate gradients in solving (2) on a lattice and a
pyramid, the number of multiply operationsrequired to
solve (2) was also calculated.Figure 6 demonstratesthat
the numberof iterationsrequiredfor convergencedecreases
signi�cantly as new levels are incorporatedinto the graph,
such that the numberof iterationsrequiredfor convergence
for a full pyramid is slightly greaterthanhalf that requiredfor
a lattice. The computationaleffect of reducingthe numberof
iterationsrequiredfor convergenceis alsodisplayedin Figure
6, demonstratingthat the improved segmentationsobtained
from a pyramid architectureincur less than 7% additional
computations.This result representssigni�cant improvement
over the additional computationsof 33% expectedby a an
algorithmthat is linear in the numberof nodes.

Image Lattice Pyramid
Blur

Fig. 7. Comparisonof segmentationsproducedby lattice-basedandpyramid-
basedisoperimetricalgorithmin responseto increasedblur. Left: Imagewith
increasedvarianceGaussiankernel (1–7 pixel variance).Middle: Lattice-
basedsegmentation(� = 95, stop = 1:0 � 10� 5 ). Right: Pyramid-based
segmentation(� = 180, stop = 2:0 � 10� 5 ).

B. Segmentationquality

Due to the additionallevels in a connectedpyramid, more
global information is usedby the isoperimetricalgorithm in
determininggood partitions.This additional global informa-
tion generatesimproved localization of blurred boundaries,
resultingin higherquality edgedetection.

Sincethe connectedpyramid basedisoperimetricalgorithm
makes better use of blurred edges,we expect that the �nal
segmentationon natural imageswill be improved. In Figure
8 the lattice-basedand pyramid-basedisoperimetricsegmen-
tationsarecomparedfor several naturalimages.Onecansee
thatdif�cult edgesarebetterlocalizedwith thepyramid-based
algorithm.

V. CONCLUSION

Ourpurposein thispaperwasto usetheconnectionbetween
conjugate gradientsand a mixing (i.e., diffusion) processto
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(a) ESLab0002 (b) Lattice (c) Pyramid (d) ESLab0004 (e) Lattice (f) Pyramid

(g) ESLab0027 (h) Lattice (i) Pyramid (j) ESLab0031 (k) Lattice (l) Pyramid

Fig. 8. Comparisonof images segmentedwith pyramid (� = 180, stop = 10� 5 ) and lattice (� = 95, stop = 10� 5 ) based isoperimetric
algorithms.More examplesof the segmentationsproducedby the pyramid-basedalgorithmmay be found at http://eslab.bu.edu/publications/
grady2004faster/ .

motivate the designof imagegraphtopologieswhenemploy-
ing algorithmsthat requirethe solution to a systemof linear
equations.

Speci�cally, we have demonstratedthat the conversionof a
standardlattice to a “small world” graphthroughthe addition
of asmallnumberof randomedgesresultsin largeincreasesin
theconvergenceratewith minimal effect on the �nal solution.
Wecanexpecttheef�ciency of thesmallworld modi�ed graph
to increaseasthe imagesizegrows, sincethe diameterof the
unmodi�ed lattice grows linearly with imagesize, while the
diameterof the modi�ed graphremainsroughly constant,for
the sizesof imagegraphsthat we have investigated.

The connectedpyramid graph introducesadditionalnodes
andedgesin anattemptto producehigherqualitysegmentation
resultsby taking into accountthe image at multiple resolu-
tions. We have demonstratedthat the amountof computation
required to processthe graph that has been modi�ed with
signi�cant additionsto the nodeandedgeset is reducedfrom
the expected4n2=3 for an n � n lattice to a much smaller
amount.In thecaseof a 512� 512 lattice,only 6% additional
computationswere required to compute a solution on the
modi�ed graph.We have demonstratedthat thepayoff for this
slight increasein computationis an enhancedability for the
isoperimetricsegmentationalgorithm to detectblurred object
boundariesandan overall increasein segmentationquality.
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KözleḿenyekPublications, vol. 5, pp. 17–61,1960.



7

[18] Paul Erdös and Alfred Renyi, “On randomgraphs.i.,” Publicationes
MathematicaeDebrecen, vol. 6, pp. 290–297,1959.

[19] DuncanJ.Watts,Smallworlds: thedynamicsof networksbetweenorder
and randomness, Princetonstudiesin complexity. PrincetonUniversity
Press,Princeton,N.J., 1999.

[20] StephenBarnardand Horst Simon, “A fast multilevel implementation
of recursive spectralbisectionfor partitioning unstructuredproblems,”
Tech. Rep. RNR-92-033, NASA Ames ResearchCenter, November
1992.


