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Abstract

The use of visual representations in which retinal
neurons receptive fields are not constant over the vi-
sual field is universal in the visual systems of higher
vertebrates, and is coming to play an important role
in active vision applications. The breaking of transla-
tion symmetry that is unavoidably associated with non-
uniform sampling presents a major algorithmic com-
plication for image processing. In this paper we use
a Lie group approach to derive a kernel which pro-
vides a quasi-shift (i.e. approzimate shift) invariant
template matching capability, under normal convolu-
tion in the distorted (range) coordinates of the non-
uniform mapping. We work out the special case of
the log-polar mapping, which is of great interest in vi-
ston; in this case, we call the associated linear integral
transform the “exponential chirp transform” (ECT).
The method is, however, general for other forms of
mapping, or warp, function.

1 Introduction

This paper addresses a fundamental difficulty in
performing frequency domain image processing on im-
age architectures which are strongly space-variant,
and, in particular, which are described by the log-polar
map, or one of its variants. The term space-variant
denotes the cascade of a an anti-aliasing non-isotropic
filter (see [24]) and a non-uniform sampling stage. The
log-polar map is of interest in computer vision for two
major reasons:

1. It has been shown to be a good approximation
to the image format used in primate and human
visual cortex [21], and would seem to provide ad-
vantages to machine vision which are similar to
those that are already understood to apply to hu-
man vision.

2. Tt provides a continuum model for variable reso-
lution, or foveating pyramid architectures in ma-
chine vision.
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Recently, a number of research groups have con-
structed machine vision systems based on this archi-
tecture [26, 1, 3, 11, 17, 2.

The specific problem addressed in this paper is the
use of Lie Group methods to formulate and then solve
a specific partial differential equation (PDE). The so-
lution of this PDE yields a space-variant kernel which
provides a shift-invariant property analogous to that
of the conventional Fourier transform for image ar-
chitectures which are space-variant. This seemingly
contradictory result is expected to be of fundamen-
tal importance to image processing in space-variant
applications. Using the kernel that we have derived,
which we call the exponential chirp kernel (ECT), it
is possible to convolve an image in, for example, log-
polar coordinate form, and yet retain the advanta-
geous shift invariances associated with conventional
Fourier Analysis. We have also derived, in other work,
a fast algorithm for this convolution [4]. This work,
together with the natural data compression provided
by space-variant architectures, allows extremely high-
speed template matching (which we estimate at 50-100
convolutions/second) to be performed with a single
low-cost DSP chip. We show some examples of tem-
plate matching, using this methodology, in the present
paper.

The log-polar (or more accurately, complex loga-
rithmic) map is defined as follows (eq.(11) expresses
the mapping in terms of real coordinates):

w = Klog(z + a) (1)

In this equation, K is an experimental constant which
is only of relevance to the biological scale factor of a
particular map, and will be dropped in the following
discussion (see [21] for a review of estimates of this
parameter), “a” a real constant [15] that deals with

the singularity at the origin, complex “2” represents

visual pixel coordinates, and complex “w” represents
log-polar coordinates. In the context of computer
graphics, the log-polar coordinate transform must be
adjoined to an algorithm for image warping, which

expresses the space-variance of pixel size, as well as



pixel location. This can be stated as follows: we as-
sociate each pixel W from the range of the log-polar
warp a set of domain pixels f~1(W)eZ, where Z rep-
resents the set of domain pixels which would come,
commonly, from a conventional t.v. image. Formally,
using the notation yz to represent the location of a
domain pixel,

FYW) =Z| log(xz + a)eW (2)

Thus, each pixel W represents the support of a small
group of pixels in the domain, whose size increases
with increasing distance from the origin. The location
of these pixels is expressed by the complex logarithmic
coordinate change of eq.(1).

Figure 1 shows a conventional video frame, with a
central fixation point.

Figure 2 shows a log polar mapping of Figure 1.

The log image has 4096 pixels, while the source im-
age has 65536, yielding a compression of more than
one order of magnitude!. Given the ability to point
the sensor (i.e. active vision), and appropriate at-
tentional algorithms to determine where to move the
sensor, it is clear that this architecture could be ex-
tremely useful. Yet, the size and the “shape” of image
features changes radically as the “fixation” point is
moved, as is evident in the figure. In other words, the
good news of SV vision is that enormous reductions
in space-complexity can be achieved. The bad news
is that even the simplest image processing tasks can
become extremely difficult.

Historically, there have been three approaches to
this problem. First, one might work in the inverse
mapped log-polar image. But, the number of pixels in
this image is equal to that of Figure 1 (when repre-
sented in a device or memory with conventional con-
stant pixel architecture), therefore sacrificing one of
the principle motivations of the method. Second, one
might precede the log-polar mapping with a Fourier
transform, i.e. use a Mellin-Fourier transform, as has
been pointed out during the past three decades, e.g.
[5, 8, 19, 23]. Third, one may use the connectivity
graph of the transformed domain [25]. This approach
cannot be generalized for frequency domain applica-
tions. The Mellin-Fourier transform is equivalent to
applying the operations of Fourier transform, log polar
mapping and Fourier transform to the original image.
The first Fourier transform is, up to a phase, transla-
tion invariant. The log-polar transform provides size
and rotation invariance, up to a spatial shift (see [19])
and the final Fourier transform reduces this shift to
a phase. The Mellin transform has generated a fair
amount of attention as an example of a geometrically
invariant linear integral transform method.

At this point, it is important to point-out a fact
which has not always been emphasized. Although
the Mellin transform technique does solve the prob-
lem of working in a space-variant domain such as the
log-polar map, it does so, by, in a sense, “throw-

Lfor human vision the compression is 4 orders of magnitude
[15].

ing the baby out with the bath water.” The ini-
tial Fourier transform, which nullifies the unpleasant
space-variance of the log-polar map, also removes one
of the the main advantages for which the log-polar
map was introduced (see [20, 10]). The log-polar
mapping used in the Mellin transform is in frequency
space, and thus, rather than having a “foveating” or
space-variant vision architecture, the Mellin transform
provides a “fovea” in frequency space. The practi-
cal disadvantage of this is that it requires two dimen-
sional (FFT) transform of the full rank image. This
is computationally unfavorable for many real-time vi-
sion applications, and obviates the space-complexity
advantages outlined above for the log-polar mapping.

In the present paper, we derive, using Lie Group
methods, the exponential chirp transform (ECT),
which retains the favorable translation symmetry of
the Mellin-Fourier approach, but does not require a
transformation back into the original image plane. As
outlined in eq.(2), we seek a form of space-variant ker-
nel, which, when convolved with a space-variant image
such as produced by the log-polar map, provides an
analogue of the usual shift property that the Fourier
transform have in conventional space-invariant imag-
ing. Specifically, we wish our kernel to have the prop-
erty that convolution with the image (in the range
coordinate system of the warped image) changes only
by a phase when a shift is applied in the domain
coordinates. Such a kernel would allow us to gener-
alize Fourier Analysis to space-variant mappings, and
would allow an efficient computation of the convolu-
tion, since our range coordinate system has a very
small number of pixels. We will now provide a brief
review of Lie Group methods in partial differential
equations, and we will then show a PDE system whose
solution is the desired kernel. This method may be
used in general to set up the PDE system which solves
this problem for an arbitrary space-variant mapping.
Then, we will demonstrate a solution to this PDE
system for the particular case of the log-polar map.
Finally, we show several examples in which we have
applied template matching in a simple optical char-
acter recognition demonstration using this method-
ology, illustrating shift invariant template matching,
performed with high efficiency in the log-polar image
format.

2 Lie Group Theory
Consider the following invertible coordinate trans-
formation in a two-dimensional space:

(#,9) = (¢(z,y,p),¥(z,y,p)) 3)

If eq.(3) is a smooth one-dimensional manifold (e.g.
curve parameterized by p) with smooth inverse map,
such that:

(¢(:i.7 ?j; p1)7 ¢(i'> ]j; ,01)) = (¢(.’L‘, Y, p2)7 w(ma Y, p2))(4)

where p; and p, are two parameters, then eq.(3) repre-
sents a one-parameter Lie group, parameterized by p;



po identifies the identity element (i.e. identity trans-
formation):

($7y) = (¢($>y>PO)>¢($>y>PO)) (5)

We can express the coordinate transformation using
the following Taylor’s series, expanded at po:

(2,9) = (=,y)+

(6)
(a(,y), B(z,9)) [p — po] + o([p — po]?)
where
a(z,y) = %ﬁhp) lo=po
(z,y, p) "
B(z,y) = # lo=ro

The infinitesimal generator [13] of the Lie Group:
0 0
g =aly)g +8@y)5 (8)

generates a one-parameter group by direct solution
of the differential equation expressed in eq.(7), tak-
ing eq.(5) as initial conditions. The elements of a Lie
group may be also computed by the exponential map
(see [14]): exp(pg)(z,y)-

Particular attention has to be placed on the group’s
parameter, because it generates the generic element of
the Lie group. In particular eq.(5) can be rewritten in
this notation, where p = 0 determinates the identity
element of the group:

exp(0g)(z,y) = (2,9) 9)

The infinitesimal generator g is:

dip [exp(08)(@,9)] = €|y (10)

p=0

Example 1 The generator gy = % generates the
group of the z-axis translations:

(2,9) = (z +p,9)

Example 2 Considering the group of rotations in
the plane:

(2,9) = (z cos(p) — y sin(p), z sin(p) +y cos(p))

according to eq.(7)

0¢(x,y, p)

a(z,y) = 3 lp=0 = —y

ov(z,y,p

ﬁ(z'ay) = 8p ) ‘p:O =T

we obtain the infinitesimal generator gr(z,y) =
R )
Y ox oy

Example 3 The generator gg =z % +y a%, using

eq.(7) we obtain the following system of ordinary dif-
ferential equations,

or
a—p—.fl?
Oy
8_p_y

which generates the group (e” z,e”y) of exponential
scalings.

3 The Exponential Chirp Transform
(ECT)

We consider here the following two-dimensional log-
polar (or complex logarithmic) transformation which
is appropriate to model primate visual cortex [15]:
w = log(z + a), where “a” is a definite positive pa-
rameter. 2 The transformation between spaces can
therefore be written:

& =log+/(z +a)? +y>?

(11)

— arctan —4

1 = arctan ;——
Our goal is to achieve “shift-invariance”, like that of
the usual Fourier transform, in the log-polar plane.
Thus given an image s(&,7) in the domain of the
polar-log mapping , we require a change of variables
& mn) — (f(&n),9(&m)) so that translations in the
original plane (x,y) will result only in phase factors

for the following Fourier transform:

/ /D 5(6m) | 7€ )] expl—27 J(F(€,m) bt
g(&,n) h)]d€ dn (12)

where |J(§,n)| is the determinant of the Jacobian of
the transformation and D = {(£,7) : —oc0 < € < +00

and —37 <5 < Z}. The following Lie group will en-
able us to find the two functions (f(£,n) and g(&,7))

2The complex log transformation requires a branch cut,
which is taken in this case to divide the plane into two parts
(Real(z) > 0 and Real(z) < 0. Note that this is identical to
(and in fact was motivated by) the anatomy of the brain: the
two sides of this mapping are in direct correspondence with the
two hemispheres of the brain. The visual cortex, which is of
the form of a complex logarithmic mapping, is divided in this
way for similar reasons. See [21] for discussion of the biological
evidence for log-polar mapping in primate visual cortex.



by solving a set of partial differential equations (PDE).
These equations identify the group of symmetries with
respect to simple translations in space. This analysis
follows that of [12, 16].

A generic infinitesimal generator under a change of
coordinates (z = ¢(&,n),y = ¥(£,n)) and inverse
transformation (£ = ¢~ (z,y),n = ¥ ~!(z,y)), has the
form,

g= (a(w,y)%aiff’mqt

0
—+

Bz, y)——F
(a=o(&.n)w=w(em)) OE

3¢‘;§jw, y) )

(13)
o~ (z,y)

(et

9
(a=o(e.n)w=v(e.m) O

B(z,y) L—a;x, v) )

where a(z,y) and B(z,y) are the same as in eq.(8).
The horizontal shift infinitesimal generator (see exam-
ple 1), under the log-map transformation is therefore,

g6 = xp(—&) COS(n)a% ~ exp(—=¢) sin(n)a% (14)

Using eq.(13) the infinitesimal generator for rotation

(see example 2) is 3% and for exponential scaling is

a%' The log-map transformation, therefore, changes

the group of exponential scalings and rotations into a
group of simple horizontal and vertical translations.
We are interested in “t” and “g” which satisfies the
following system of partial differential equations, ex-
pressed by knowing that the generator of translations

in ®2 is the vector (1,0) (see example 1) %),

exp(=¢) cos(n) L) — exp(-g) sn() L) —
9g(&;n) 9g(&,m)

exp(—¢) COS(")Tg —exp(=§) sin(n)6777 =0

It can be verified by direct substitution that the
PDE above has a (particular) solution:

f(&,m) = exp(§) cos(n) — a
g(&,m) = exp(€) sin(n)

31t is important to note here that size and rotation symmetry
is provided by the map log(z + a) only in the limit that a = 0.
Realistic models of primate anatomy require a small but finite
a, so provide size and rotation scaling at regions larger than this
value of a.

41t does not really matter if we use the vector (1,0) or (0, 1),
it will only differ by a transposition of the ECT matrix.

(15)

The final result of this analysis is to write the explicit
form of the exponential chirp transform (ECT), by
combining eq.(15) and eq.(12),

J[ 56y exo(z6) expl-2rile (exp(@) costa
—a) + 1 exp(§) sin(n)] d¢ dn (16)
where D = {({,n) : —00 < £ < +00 and —37 <p<

5 .
The ECT has the following properties:

1. Shift in the domain causes only a phase change in
part of the complex exponential chirp transform?®.
This transform is done by using the exponential
chirp kernel and the warped image (i.e. the image
in the range coordinates) as in eq.(16).

2. This result may be extended to arbitrary map-
pings, by setting up the corresponding PDE, and
solving it. In the present case, we have derived
it for the class of log-polar mappings of the form
log(z + a).

3. This mapping is correctly “foveating”, i.e. space-
variant, unlike the Mellin transform. It thus al-
lows us to exploit the efficiency of computing in
the typically small image sizes that result from
space-variant imaging systems.

4 Results

We will now show some practical examples of appli-
cation of the ECT, with the use of real images of tools.
Working in a distorted space, or in particular coping
with a non-uniform sampling, requires special care in
order to avoid aliasing. Basically both kernel and im-
age have to be filtered before the actual integral trans-
formation so that both would satisfy Shannon’s sam-
pling theorem. Regions near the fovea which are sam-
pled with a higher sampling frequency require a less
abrupt band-pass filtering than regions in the periph-
ery which are sampled much more coarsely. Aliasing
is avoided when the image is filtered with a position-
dependent band-pass filter before sampling. The im-
ages of tools in Figure 1 form an array of 256 by 256;
the fovea is always centered in the center of the image
with R = 128; the log-map images are 64 by 64 with
parameter a = 1.0; therefore the polar log-map in-
troduces a compression factor of 16. The tools image
was initially filtered with an anti-aliasing non-uniform
mean-filter. The image was divided into sectors with

51t is important to note that due to the space-variant (i-e.
non-isotropic filtering followed by a non-uniform sampling) na-
ture of the architecture, two shifted objects, one centered in
the fovea and one shifted in the periphery, have, in general,
different frequency representations. When proper non-isotropic
filtering and non-uniform sampling is introduced (see [4]), a low
frequency band is approx. common to both objects and in this
band the phase change is detectable.



Figure 1: An image of tools uniformly sampled.

exponentially growing radius, and the polar-log rep-
resentation was given by taking the average value in
every sector, as shown in Figure 2

The kernel of the ECT, in eq.(16), is clearly a com-
plex function in which the frequency of the real and
imaginary part grow exponentially with £. Therefore
the kernel must be windowed to zero (on the (£,7)
plane) when it reaches too high frequency according
to the sampling used. This can be done using an ideal
filter or by using one of the common windows (e.g.
Bartlett, Hamming, Blackman, etc.), but in our ex-
amples we used ideal filters. The results in figures
3 and 4 show that the ECT is capable of locating a
shifted copy of a tool, even in the presence of another
object in the scene. A special phase-only filter is used
as a matching algorithm (see [4]). All computations
are performed in log-polar coordinates.

5 Conclusions

In the present paper, we have shown the solution of
how to combine the space-variant imaging properties
of a mapping, such as the complex logarithm, which
plays a major role both in biological vision and in
real-time active vision applications, with the proper-
ties of the Fourier transform. We have used Lie Group
methods to set up a partial differential equation whose
solution is the kernel which gives us the desired invari-
ance properties, in the range coordinates of the image
warp. In other work, [4], we have developed a highly
optimized algorithm that allows computation of the
ECT with complexity O(N2log(N)) (i.e. the same as
the FFT). From the point of view of real-time vision,
this allows us to combine the space-efficiency of the
log-polar mapping with the convenience of frequency
domain template matching and image processing. We

Figure 2: The log-polar representation of the image of
tools.

Figure 3: Result of matching the screwdriver tem-
plate, using the exponential chirp transform together
with a phase only filter, the matching is done in the
usual uniform sampled plane.



Figure 4: Result of matching the scissor template us-
ing the exponential chirp transform together with a
phase only filter, in the original image domain.

have estimated that the ECT can be performed at
about 50-100 transforms/second, using a single DSP
processor (e.g. TI320C40). This provides the possi-
bility of performing shift, size and rotation® invariant
template matching in low-cost machine vision systems
at rates which are comparable to optically based tem-
plate matching! The practical importance of this work
is threefold:

e A Space-Variant Generalization of the Mellin
transform is described, which allows efficient im-
age processing operations to be computed on log-
polar image formats. This provides, for the first
time, a possible reconciliation of the strongly
space-variant nature of biological vision with the
properties of global Fourier analysis.

e Lie Group methods are outlined which provide
a method of generalizing this result to arbitrary
space-variant mappings.

e The difficulty of performing efficient image pro-
cessing operations on space-variant image archi-
tectures is solved.
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6Size and rotation invariance is achieved with the ECT by
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