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Abstract

In this paper, we outline a method to derive geo-
metric invariance kernels which may be applied to a
space-variant sensor architecture. The basic idea is to
transform a kernel with desired symmetry properties
(e.g. the Fourier Kernel) in the domain to the range
of the transform. By combining this transformed ker-
nel with the Jacobian of the transformation, we obtain
a new integral transform, in the range , which has sim-
tlar properties to the original transform. We illusirate
this idea with a variant of the Mellin-Fourier trans-
form, applied to an image which has been transformed
by a log-polar mapping. The kernel obtained, which
we call an “ezponential chirp” has properties (unlike
the Mellin-Fourier transform) which are both consis-
tent with the spatial nature of human vision and can
be applied directly in the space-variant image plane.
We outline applications to visual template matching
and auto-correlation; and show a one-dimensional ez-
ample of a generalization of cepstral auto-correlation
using this method.

1 Introduction

Space-variant vision refers to sensor architectures
in which pixel size varies across the sensor plane [5].

Space-variant systems based on the log polar map-
ping have transformation properties that may be use-
ful in simplifying the computation of optical flow and
possibly size and rotation invariance [4, 6].

However, one of the major impediments to using a
log-polar sensor architecture has been that the desired
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property of space-variance breaks translation symme-
try in such a way that the simplest image processing
operations become extremely complex.

Historically, there have been two different ap-
proaches to this problem. First, one might work in
the inverse-mapped log-polar image. However, the
number of pixels in this image is equal to that of the
original uniformly sampled image, therefore sacrificing
one of the principle motivations of the method. Sec-
ond, one might use a Mellin-Fourier transform, as has
been pointed out during the past three decades, e.g.
[1]. The major computational drawback of the Mellin-
Fourier approach is that it requires two-dimensional
FFT of the full (i.e. the original uniformly sampled)
image. The major biological drawback is that it re-
quires a Fourier Transform of the image to occur prior
to the complex logarithmic map of primary visual cor-
tex, which is grossly inconsistent with the anatomy of
the visual system. In the present paper, we describe
a method, the exponential chirp transform (ECT),
which retains the favorable translation symmetry of
the Mellin-Fourier approach, but does not require a
transformation back into the original image plane. !
1.1 One-dimensional case

Given a function f(z) and an invertible transfor-
mation w : £ — £ the Fourier Transform of f(z) is:

1There are applications of Lie Group Theory to the genera-
tion of invariance kernels [3], which provide an invariance kernel
for a stated symmetry. So, for example, if the desired symme-
try is shift, these methods produce the trigonometric kernel
as an invariance kernel. For more general symmetries, these
methods are capable of producing a desired invariance kernel.
However, in this context, this invariance kernel is applied in
the image plane. Using the methods of the present paper, an
invariance kernel could be transformed and applied under an
arbitrary space-variant transformation.
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is “invariant” up to a phase, under translation in the z
domain. This invariance may be complicated by alias-
ing due to the detailed nature of the transformation
w. Following [2], we will consider the one-dimensional
transformation: 2
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for which the kernel, as in eq.(2) is:
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The kernel found is reminiscent of a “chirp” with ex-
ponentially growing frequency and magnitude. Fig-
ure 1 illustrates the one-dimensional kernel, with anti-
aliasing filtering: aliasing must be carefully handled,
since the rapidly growing frequency of the kernel will
eventually cause aliasing to occur.

1.2 Two-dimensional case

Given a function f(z,y) and an invertible and dif-
ferentiable transformation w : (2,y) — (£,7), the
Fourier Transform of f(w,y) in the (€, n) space is given
by the following integral transform:

+o0
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2 This represents a logarithmic mapping in which the singu-
larity at the origin is removed by defining two separate branches,
using some finite and positive “a” to provide a linear map for
[lz|]] << @ and becomes smoothly logarithmic for |||l >> a.
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Figure 1: One-dimensional example of kernel with

anti-aliasing filtering

where K1(£, 7, k,1) is the following kernel:

cexp[—j(k -z(&,n) +1-y(€,n))] (7)

where J(§,n) is the Jacobian of the transformation.
Note that we have achieved the objective of finding a
kernel such that we can compare test data appearing
at different positions in the image plane, using con-
volutions and other image processing operations per-
formed only in the transformed coordinates. For the
case of interest here, in which the transformation is a
log polar mapping, this allows us to work with the log-
polar image directly, despite the fact that an object is
grossly deformed in size and shape in the log-polar
plane, when it moves in the image plane. Moreover,
since the log-polar plane is orders of magnitude smaller
than the image plane, we can reap the benefits of the
space-variant architecture and avoid the penalty of the
lack of simple shift invariance. We consider here the
following two-dimensional log-polar (or complex loga-
rithmic) transformation [2]: w = log(z+a), where “a”
is a definite positive parameter. 3 The transformation

3The complex log transformation requires a branch cut,
which is taken in this case to divide the plane into two parts
(Real(z) > 0 and Real(z) < 0. Note that this is identical to
(and in fact was motivated by) the anatomy of the brain: the
two sides of this mapping are in direct correspondence with the
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Figure 2: Example of a two-dimensional kernel for log-
polar transformation

between spaces can therefore be written:
=log\/(z +a)? + 2
7 = arctan ?f/ra

so we can express & and y as:

{

Eq.(7) becomes:

z = exp(€) cos(n) — a

y = exp(€) sin(n)
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where D = {(£,n) : —00 < € < +ooand =X < n <
%}. Figure 2 illustrates the kernel in two-dlmenswns,
its behavior is exponential both in frequency and am-
plitude along the ¢ axis and is clearly oscillating along
the 7 axis.

2 Results and Conclusions

We will now show how the use of these kernels
can be used to perform shift invariance in the im-
age plane of a map function which is strongly space-
variant. These demonstrations are made using cep-
stral auto-correlation here, as an illustration of a
template matching technique (although many others

two hemispheres of the brain. The visual cortex, which is of the
form of a complex logarithmic mapping, is divided in this way
for similar reasons.
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might have been chosen). The cepstrum is often used
to detect a shifted copy of an object # and has been
used for echo detection in one-dimensional signals and
stereo estimation in two-dimensional signals (images).
As an illustration, we have generated a Gaussian pulse,
and have examined shifted copies of this pulse in both
the original signal plane and after a logarithmic trans-
formation provided by Equation(4).

In the first column of Figure 3, we show a pulse
and its echo. The next column shows the pulse pair
after logarithmic transformation. In the third column,
we show the cepstrum of the pulse pair after logarith-
mic transformation (distorted pulse pair). The cep-
strum of the original pulse pair (not shown) would be
a delta function located at the position of the shift.
The fourth column shows the cepstrum, obtained us-
ing the ECT (cepstral ECT), of the distorted pulse
pair. Each row shows a progressively larger shift be-
tween the original pulse and its echo. As the shift
becomes larger, the logarithmic transformation pro-
duces an increasing distortion of the second pulse. In
the cepstrum of the log plane (column three of the fig-
ure), there is essentially no signal at the location of the
shift, which is expected, since the shifted pulse is both
narrower and of distorted shape: it should not match
well with the original Gaussian template. In the last
column, which shows the cepstral ECT as we have de-
scribed in Equation (5), there is now a sharp peak at
the expected position. (Note that the large peak at the
origin is always present and would, in practice, be re-
moved by thresholding). The cepstrum, applied to the
log transformed space (third column), fails to detect
a match essentially in every row. However, the trans-
formed kernel, used in the cepstrum (fourth column)
has a peak of signal to noise ratio that is perhaps 3:1.
However, the peak is somewhat smaller than in the
case of smaller shift (first row), and the peak is some-
what broadened. The behavior of the cepstral ECT
(fourth column) can be explained using the concept
of a linear position-varying system [7] due to the fact
that the filter response depends on the position of the
second pulse. The linear position-varying system is
characterized by a position-varying transfer function
H{z, w).

In summary, we have shown a simple method to
generate a set of kernels which can be applied to an
image which has been re-mapped according to some
invertible map function.

4The cepstrum is the power spectrum of the log power
spectrum
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Figure 3: One dimensional example of the application of the method. In the first column are presented two
Gaussians with logarithmic sampling, in the second column are the distorted Gaussians, in the third the cepstral
autocorrelation and in the last column is the application of a generalization of cepstral auto-correlation using the
method described in the text.
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