Physical limits to spatial resolution of optical recording: Clarifying the spatial structure of cortical hypercolumns

Jonathan R. Polimeni, Domhnull Granquist-Fraser, Richard J. Wood, and Eric L. Schwartz


link to publication entry

abstract

Neurons in macaque primary visual cortex are spatially arranged by their global topographic position and in at least three overlapping local modular systems: ocular dominance columns, orientation pinwheels, and cytochrome oxidase (CO) blobs. Individual neurons in the blobs are not tuned to orientation, and populations of neurons in the pinwheel center regions show weak orientation tuning, suggesting a close relation between pinwheel centers and CO blobs. However, this hypothesis has been challenged by a series of optical recording experiments. In this report, we show that the statistical error associated with photon scatter and absorption in brain tissue combined with the blurring introduced by the optics of the imaging system has typically been in the range of 250 µm. These physical limitations cause a systematic error in the location of pinwheel centers because of the vectorial nature of these patterns, such that the apparent location of a pinwheel center measured by optical recording is never (on average) in the correct in vivo location. The systematic positional offset is 116 µm, which is large enough to account for the claimed misalignment of CO blobs and pinwheel centers. Thus, optical recording, as it has been used to date, has insufficient spatial resolution to accurately locate pinwheel centers. The earlier hypothesis that CO blobs and pinwheel centers are coterminous remains the only hypothesis currently supported by reliable observation.


supporting materials


webmaster
last modified: $Date: 2006/02/21 21:04:02 $