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Abstract

The mapping function w = k log(z + a) is a widely accepted approximation to the
topographic structure of primate V1 foveal and parafoveal regions. A better model,
at the cost of an additional parameter, captures the full field topographic map
in terms of the dipole map function w = k log[(z + a)/(z + b)]. However, neither
model describes topographic shear since they are both explicitly complex-analytic
or conformal. In this paper, we adopt a simple ansatz for topographic shear in
V1, V2, and V3 that assumes that cortical topographic shear is rotational, i.e. a
compression along iso-eccentricity contours. We model the constant rotational shear
with a quasiconformal mapping, the wedge mapping. Composing this wedge mapping
with the dipole mapping provides an approximation to V1, V2, and V3 topographic
structure, effectively unifying all three areas into a single V1–V2–V3 complex using
five independent parameters. This work represents the first full-field, multi-area,
quasiconformal model of striate and extra-striate topographic map structure.
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1 Introduction

Primate visual cortex contains multiple topographic maps of the visual hemi-
field that are ‘continuous’: neighboring points in the visual field project to
neighboring points in the cortex. The cortical magnification factor was defined
by Daniel and Whitteridge (1961) to be the distance in cortex (in millimeters)
devoted to representing a step of 1◦ in visual space. If the mapping function
is complex-analytic, then the magnification factor represents the magnitude
of the derivative of the mapping.

In recent years, there have been several functional magnetic resonance imag-
ing (fMRI) studies of visual topography, or visuotopy. These studies have not
only provided a method to non-invasively identify the borders of several visual
cortical areas (Sereno et al., 1995; DeYoe et al., 1996), but have also provided
a means to estimate the spatial precision of fMRI (Engel et al., 1997). Since
topography is the most direct and unequivocal fMRI measurement for visual
cortex, it is of importance for the purpose of validating, calibrating, and ex-
tending fMRI technology. Thus, both applied studies involving brain imaging
and basic scientific studies of visual processing would benefit from a simple
model of striate and extra-striate topography.

It has been reported that in area V1 the cortical magnification is either
isotropic, i.e. locally invariant to the direction of the step in visual space
(Daniel and Whitteridge, 1961; Dow et al., 1985), or approximately isotropic
(Schwartz, 1985; Tootell et al., 1985; van Essen et al., 1984). Complex-analytic
functions, whose derivatives are isotropic, represent conformal mappings wher-
ever the derivative is non-zero, i.e. they are mappings that locally preserve
angles. Therefore it is natural to consider conformal mappings as approxi-
mations to V1 topography (Schwartz, 1977, 1980). Although the mapping
function corresponding to cortical visuotopy has proved to be largely confor-
mal, there exist significant deviations in the topographic mapping from pure
conformality. This deviation manifests itself as a topographic anisotropy, or
shear.

The goal of this paper is to introduce quasiconformal methods for modeling
the topography of visual cortex. Our model, called the wedge–dipole model,
incorporates a simplifying assumption of uniform shear throughout a given
cortical area. In addition, the wedge–dipole mapping embodies a unified model
for the topography of the full visual field in areas V1, V2, and V3.
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2 Review of previous models of cortical topography

2.1 The monopole mapping

The reciprocal of the V1 magnification factor has been reported to be ap-
proximately linear (Schwartz, 1977; Wilson et al., 1990; Schwartz, 1994). The
complex logarithm, w = log(z), with z restricted to the half-disc, 3 is therefore
an obvious candidate to model the two-dimensional structure of the mapping,
as the magnitude of its derivative is inverse-linear. However, the complex log-
arithm has a singularity at the point z = 0. One can remove the singular
point from the mapping domain by choosing the function w = k log(z + a),
which places the singularity at z = −a (see Fig. 1(b)). This function is the
electrostatic complex potential in two dimensions of a single charge located
at z = −a (Needham, 1997), and therefore we refer to it as the a-monopole

mapping (henceforth simply the monopole mapping). The monopole mapping
captures the approximate shape of flattened V1, as well as the internal details
of the topography (Schwartz, 1977, 1980). However, it does not adequately
capture the far peripheral data where the inverse magnification factor is sub-
linear (Schwartz, 1984), nor does it capture the shape of the far peripheral
field representation in flattened V1 (e.g. compare Fig. 1(b) and (c)).

2.2 The dipole mapping

The complex potential of a pair of opposite charges (a dipole) is given by the
sum of two oppositely charged monopole potentials: w = log(z+a)−log(z+b),
where the positive charge is at z = −a and the negative at z = −b. We shall
refer to this function as the near-field ab-dipole mapping 4 (henceforth the
dipole mapping). The monopole potential may be considered as a special case
of the dipole for which b = ∞. The second parameter b captures the shape of
the V1 boundary exhibited at the peripheral representation (see Fig. 1(c)), as
well as the fact that inverse cortical magnification factor is sub-linear in the
peripheral field (Schwartz, 1983, 1984), and thus provides a two parameter
approximation of the full-field topography of V1.

3 The opposite hemi-field can be symmetrically represented by w = 2 log(a) −
log(−z + a) for Re{z} ≤ 0, as in (Rojer and Schwartz, 1990), with an analogous
construction for the dipole map.
4 The term near-field emphasizes that we are examining the dipole field in the
region between the charges, not the usual far-field dipole familiar in electrostatics,
which considers the distance between the charges to approach zero.
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2.3 Numerical conformal mapping

The monopole and dipole maps are examples of closed-form expressions for
conformal mappings. A more general conformal model is obtained by numer-

ical conformal mapping, as demonstrated by Frederick and Schwartz (1990);
Schwartz (1994). In this work, the border of area V1 was computed via quasi-
isometric brain flattening (Wolfson and Schwartz, 1989). Given a boundary
specification, a single point correspondence, and an orientation, the Riemann
mapping theorem guarantees the existence and uniqueness of a conformal
mapping to the unit disc (Ahlfors, 1966a), which can be carried through to
the visual hemi-field. The Symm algorithm (Symm, 1966) was then used to
compute the V1 mapping, where the cortical representation of the blind spot
provided the point correspondence and orientation. The result is in good agree-
ment with 2DG data, with the typical error in the range of 10% of the linear
dimensions of V1 (see Schwartz, 1994).

2.4 Topographic shear

Considerable shear has been observed near the vertical meridian representation
of V1 (e.g. Blasdel and Campbell, 2001). Furthermore, a large amount of
shear has been reported in V2 (Rosa et al., 1988). In the following section,
we present a model that assumes a very simple form of shear: a constant,
compressive shear prescribed along the iso-eccentricity curves in each area.
This shear model is consistent with reports that the V2 magnification factor
measured perpendicular to the V1–V2 border is much smaller (between 3 : 1
and 6 : 1) than that measured in the parallel direction (Roe and Ts’o, 1998).

We treat this simple form of shear as an ansatz (i.e. a preliminary working
hypothesis). In Section 4, we discuss the replacement of this type of shear with
more realistic ideas that incorporate known information about topographic
shear.

3 Modeling topography of visual cortex

3.1 Model goals

Our goals in modeling the topography of areas V1, V2, and V3 are as follows:

(1) the maps must account for shear in V1, V2 and V3;
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Fig. 1. (a) The right visual hemi-field. (b) The a-monopole map of the right visual
hemi-field. (c) The near-field ab-dipole map of the right visual hemi-field. (d) Three
copies of the visual field (one each for V1, V2, and V3) are mapped into the wedges
shown in (e), by the wedge map. The near-field ab-dipole map is then applied to
the wedges, resulting in the full wedge–dipole map, shown in (f). The topography
of human visual areas V1, V2, and V3 is semi-qualitatively shown in (g) (Horton
and Hoyt, 1991), where HM and VM mark the horizontal and vertical meridians,
respectively. The wedge–dipole model superimposed on this data is shown in (h).
The model parameters used here were a = 0.9, b = 180, α1 = 0.95, α2 = 0.5, and
α3 = 0.2. The topography of owl monkey visual cortex is shown in (i) (Allman and
Kaas, 1975). Two wedge–dipole maps are shown superimposed on this data in (j),
one for the V1–V2 complex (model parameters a = 0.8, b = 85, α1 = 1.05, and
α2 = 0.33), and one for the MT–DL complex (model parameters a = 10, b = 70,
α1 = 1, and α2 = 0.5). The MT–DL model has been scaled by a factor of 0.65
relative to the V1–V2 model.
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(2) the model must match the global shapes of areas V1, V2, and V3 as well
as their relative surface areas;

(3) adjacent topographic areas must exhibit boundary conditions such that
V1 and V2 share a boundary along the vertical meridian representation,
and V2 and V3 share a boundary along the horizontal meridian repre-
sentation (see Fig. 1(g));

(4) the Jacobian of the topographic map must reverse sign across the bound-
aries between V1, V2, and V3, exhibiting the field reversal property de-
scribed in Sereno et al. (1995);

(5) the iso-eccentricity lines must be spaced approximately logarithmically.

We now present the wedge–dipole map, which provides a unified model of V1,
V2, and V3 that meets the stated goals.

3.2 The wedge–dipole model

We can represent any point in the visual hemi-field with the complex variable
z = reiθ, where r represents eccentricity and θ represents polar angle. The
wedge map for Vk, k = 1, 2, 3, is the map

Λk(re
iθ) = reiΘk(θ), (1)

where the function Θ1 for V1 is given by

Θ1(θ) = α1θ, (2)

the function Θ2 for V2 is given by 5
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and the function Θ3 for V3 is given by

Θ3(θ) =
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2
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(4)

The wedge map warps three copies of the visual hemi-field (one each for V1,
V2, and V3) and places them into the ‘pac-man’ shape shown in Fig. 1(e).
Each copy has been compressed by an amount αk in the azimuthal direction,
resulting in a rotational shear in each of the wedges.

5 Here 0+ ≡ 0 + |ε| and 0− ≡ 0 − |ε| as ε → 0.
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The wedge map is then composed with a dipole map w = k log[(z +a)/(z + b)]
to produce the full wedge–dipole model , as shown in Fig. 1(d)–(f). This model
provides a good qualitative fit to the data—in Fig. 1(h) and (j) we show the
topographic data of Fig. 1(g)–(i), respectively, with the wedge–dipole map
superimposed (see caption for parameters).

This model achieves each of the goals outlined in Section 3.1.

(1) The wedge map imposes a constant compressive shear in the azimuthal
direction via the angular compression parameters α1, α2, and α3. This
results in a compression along the iso-eccentricity curves of the dipole
map, inducing a simple form of shear in each of the areas of the wedge–
dipole map.

(2) The dipole parameters a and b determine the overall shape of the area
borders, and the compression parameters α1, α2, and α3 not only pre-
scribe the shear, but also allow the relative surface areas to be varied to
match the data.

(3) The wedge map construction enforces the boundary conditions between
adjacent areas—image points of the V1 vertical meridians correspond to
image points of the V2 vertical meridian (i.e., reΘ1(±π/2) = reΘ2(±π/2)),
and likewise image points of the V2 horizontal meridians correspond to
image points of the V3 horizontal meridians (i.e., reΘ2(0) = reΘ3(0)).

(4) As dΘ1/dθ and dΘ3/dθ are positive, and dΘ2/dθ is negative (see equa-
tions (2)–(4)), the Jacobian of the wedge map, and therefore that of the
wedge–dipole map, reverses sign across the borders of adjacent areas.

(5) By construction, the dipole mapping ensures logarithmic spacing of iso-
eccentricity lines for the parafoveal representation and the inverse of its
derivative is sub-linear for the peripheral representation (Schwartz, 1984).

Note that we are able to jointly model areas V1, V2, and V3 with a single map
function, suggesting that these three areas be considered as a single entity, the
V1–V2–V3 complex .

4 Discussion

Sources of topographic data The topographic data shown in Fig. 1(g) and
Fig. 1(i) consists of qualitative outlines of topography based on the collective
experience of the investigators involved. Unfortunately, there is, at present,
very little quantitative topographic data to which we can fit our model.

This is partly due to technical difficulties in collecting full-field visuotopic
data: in fMRI experiments, the narrow bore of the magnet makes it difficult
to present stimuli in the visual periphery. In addition, the unreliability of
quantitative topographic data is exemplified by the wide variation in the
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reported measurements of log(z + a) parameter a with little error analysis
(Wilson et al., 1990).

Furthermore, it has become common practice to make cuts in cortex that
run through the V1–V2–V3 complex (in particular through the base of the
calcarine fissure, which corresponds to the representation of the horizon-
tal meridian in V1), prior to flattening (e.g. see Kaas, 1998). These cuts
drastically alter the topology of this region of cortex, resulting in flatmaps
that need to be deformed and ‘glued’ back together in order to observe the
structure of their topography.

Other forms of shear In this paper, we have assumed a very simple form
for the topographic shear. A constant rotational shear is produced by the
wedge map in each area, i.e. a compression along iso-eccentricity lines. There
is evidence that this is not a good assumption for V1, where there appears
to be a significant amount of shear near the representation of the vertical
meridian but less near the representation of the horizontal meridian (Blasdel
and Campbell, 2001; LeVay et al., 1975; van Essen et al., 1984; Tootell et al.,
1982; Schwartz, 1994).

It has been hypothesized (Tootell et al., 1982; Blasdel and Campbell,
2001) that topographic shear in V1 is related to the injection of two full
representations of the visual field (left and right hemi-retinae) into the oc-
ular dominance columns (ODCs) in V1. Hoever, this idea fails to explain
the deficit of shear at the horizontal meridian representation, where ocular
dominance columns are well organized over small distances. Nevertheless, a
more realistic assumption would be to have the shear follow ODC bound-
aries, rather than iso-eccentricity lines. Similarly, the shear in V2 could be
induced to follow the boundaries of the thick–thin–interstripe columns. We
plan to investigate these more sophisticated models in future work.

Quasiconformal mapping A topographic map exhibiting an anisotropic
magnification (e.g. the wedge–dipole map) is a quasiconformal mapping

(Ahlfors, 1966b), meaning that its deviation from a purely conformal map-
ping is bounded. 6 As conformality is a geometric property that is derived
from the imposed metric, every continuous quasiconformal mapping can be
shown to be conformal with respect to a specific metric (see, for example,
Ahlfors, 1955; Ahlfors and Bers, 1960).

Given a specification of the shear present in a mapping (e.g. the wedge
map or the shear patterns described in Section 4), one can extract the shear
deformation from the mapping Jacobian. 7 It is then possible to compute a
mapping function that is conformal with respect to the new metric, using
either complex-analytic functions (as in this paper) or numerical conformal
methods (as in the use of Symm’s algorithm by Frederick and Schwartz
(1990)). Finally, one can re-insert the shearing deformation into the metric

6 Although the derivative of a conformal or quasiconformal map must be non-zero,
the derivative of the wedge map is zero at the origin. However, this critical point is
isolated.
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to arrive at the full quasiconformal mapping. Thus, generalizations of shear
patterns can be combined with generalizations of conformal mappings to
produce a rich class of models that can be used to model visual topography.

Visual areas V3, MT, and DL There has been some question as to whether
the cortical area adjacent to V2 on its outer boundary constitutes a single
area, V3, or whether it constitutes two different visual areas: VP and V3d
(see Kaas, 1998, for a review). However, recent studies have provided con-
vincing support for a single V3 representation (Lyon and Kaas, 2001, 2002),
and the V1–V2–V3 complex is consistent with this idea.

Another example of a cortical complex is in the owl monkey, where visual
areas MT and DL bear a superficial resemblance to a V1–V2 complex (see
Fig. 1(i)), which suggests that this MT–DL complex may also be modeled
with the techniques presented in this paper.

Singularities of cortical maps The dipole mapping w = k log[(z +a)/(z +
b)] introduces two singularities at z = −a and z = −b on the negative real
axis. As more visual areas are included into the wedge map construction,
the domain of the dipole mapping begins to approach the singularities, i.e.
the ‘pac-man’ in Fig. 1(e) begins to close down onto the negative real axis as
more ‘wedges’ (i.e. visual areas) are added to the complex. Another way to
see this is to consider modeling V1 and V2 with no rotational compression:
the domain of each area would occupy a half-disc, thus the dipole domain
would include the entire disc and the singularities on the negative real axis
would therefore be unavoidable.

This provides an interpretation of the need for shear in the wedge–dipole
model: without rotational compression, the V2 wedge would encounter the
logarithmic singularities. The consequence, which we have observed in com-
puter simulation, is that the surface area of V2 diverges if the domain of
V2 is allowed to approach the negative real axis in the wedge map. Rota-
tionally shearing V2 compresses the domain of the dipole mapping away
from the negative real axis. Thus, the existence of large shear in V2 and
V3 in cortex may be a side-effect of the nature of topographic map singu-
larities, together with the observed boundary conditions (i.e. field reversal,
shared boundaries, etc.). Avoidance of these singularities may help define
the global geometric structure of the cortical topography by regulating the
amount of shear and the total area for each region. Under the assumptions
of the wedge–dipole model listed in Section 3.1, there is a trade-off between
area and shear such that no more than three or four regions can be repre-
sented in a single complex without requiring either very large shear or very

7 The differential, or Jacobian matrix, of a regular map f : R
2 → R

2 is represented
by a combination of a dilation (the trace), a rotation (the anti-symmetric compo-
nent), and a deformation or shear (the traceless symmetric component). If a map is
conformal (i.e., isotropic), its shear component is zero. See (Schwartz, 1984, 1994)
for detailed discussion in the present context, or, for the original discussion, see (von
Helmholtz, 1858).
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small area.
Steady state diffusion source and sink The real part of the ab-dipole map

is the steady state solution to the diffusion equation

∇2φ −
dφ

dt
= δ(x + a, y) − δ(x + b, y) (5)

for a single source and sink, and the imaginary part is given by its har-
monic conjugate (Needham, 1997). From this point of view, it is a ‘natural’
model function to represent two-dimensional patterns. It would appear that
developmental modeling, in terms of gradients of morphogenetic or other
chemo-tactic control, might benefit from the analysis of this paper. The
results of this paper suggest that it may be possible to developmentally
code for the topographic structure of visual cortex using a sheared dipole
architecture specified by a small number of parameters.
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