The Isomap Algorithm and
Topological Stability

Tenenbaum et al. (1) presented an algo-
rithm, Isomap, for computing a quasi-isomet-
ric, low-dimensional embedding of a set of
high-dimensional data points. Two issues
need to be raised concerning this work. First,
the basic approach presented by Tenenbaum
et al. is not new, having been described in the
context of flattening cortical surfaces using
geodesic distances and multidimensional
scaling (2, 3) and in later work that used
Dijkstra’s algorithm to approximate geodesic
distances (4, 5). These ideas generalize to
arbitrary dimensionality if the connectivity
and metric information of the manifold are
correctly supplied.

Second, and more important, this ap-
proach is topologically unstable and can only
be used after careful preprocessing of the data
(6). In the application domain of cortical
flattening, it is necessary to check manually
for connectivity errors, so that points nearby
in 3-space (for example, on opposite banks of
a cortical sulcus) are not taken to be nearby in
the cortical surface. If such care is taken, this
method represents the preferred method for
quasi-isometric cortical flattening.

What is new about the Isomap algorithm
is how it defines the connectivity of each data
point via its nearest Euclidean neighbors in

the high-dimensional space. This step is vul-
nerable to short-circuit errors if the neighbor-
hood is too large with respect to folds in the
manifold on which the data points lie or if
noise in the data moves the points slightly off
the manifold. Even a single short-circuit error
can alter many entries in the geodesic dis-
tance matrix, which in turn can lead to a
drastically different (and incorrect) low-di-
mensional embedding.

We illustrate this failure in Fig. 1, using
the MATLAB code published by Tenenbaum
et al. along with their “Swiss roll” data, to
which we have added a small amount of noise
(7). Clearly, the algorithm is topologically
unstable: Small errors in the data connectivity
(topology) can lead to large errors in the
solution. Choosing a very small neighbor-
hood is not a satisfactory solution, as this can
fragment the manifold into a large number of
disconnected regions. Choosing the neigh-
borhood “just right” requires a priori infor-
mation about the global geometry of the high-
dimensional data manifold (8), but, presum-
ably, it is exactly in the absence of such
information that one would need to use an
algorithm to find “meaningful low-dimen-
sional structures hidden in high-dimensional
observations” (/). In summary, the basic idea

Fig. 1. (A) The “Swiss roll” data used by Tenenbaum et al. (7) to illustrate their algorithm (n =
1000). (B) The two-dimensional (2D) representation computed by the e—Isomap variant of the
Isomap algorithm, with € = 5. Nearby points in the 2D embedding are also nearby points in the 3D
manifold, as desired. (C) Data shown in A, with zero-mean normally distributed noise added to the
coordinates of each point, where the standard deviation of the noise was chosen to be 2% of
smallest dimension of the bounding box enclosing the data. (D) The Isomap (€ = 5) solution for the
noisy data. There are gross “folds” in the embedding, and neither the metric nor the topological

structure of the solution in (B) is preserved.

of Isomap has long been known, and the new

component introduced by Tenenbaum et al.

provides an unreliable estimate of surface

connectivity, which can lead to failure of the
algorithm to perform as claimed.
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Response: Balasubramanian and Schwartz
claim that “the basic idea” of our Isomap
technique for nonlinear dimensionality reduc-
tion (/) has “long been known” in the context
of flattening cortical surfaces. However, the
problem of cortical flattening differs in cru-
cial ways from our problem of finding low-
dimensional structure in a cloud of high-
dimensional data points. State-of-the-art pro-
cedures for cortical flattening (2, 3) take as
input a triangulated mesh of fixed topology
and dimensionality, which represents addi-
tional structure not available in the general
problem we attempted to solve. We take as
input only a collection of unorganized data
points; the topology and dimensionality of
the underlying manifold are unknown and
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need to be estimated in the process of con-
structing a faithful low-dimensional embed-
ding. Our algorithm provides a simple meth-
od for estimating the intrinsic geometry of a
data manifold based on a rough estimate of
each data point’s neighbors on the manifold.
The simplicity of our algorithm, in contrast to
the specialized methods used in cortical flat-
tening (2—4), makes it highly efficient and
generally applicable to a broad range of data
sources and dimensionalities, and makes pos-
sible our theoretical analyses of asymptotic
convergence (/).

Balasubramanian and Schwartz also as-
sert that Isomap is “topologically unsta-
ble,” based on their failure to construct a
topology-preserving 2D embedding of a
Swiss roll data set that has been corrupted
by additive Gaussian noise. As we dis-

Fig. 1. (A) Our Swiss A
roll data set (7), shaded
according to one in-
trinsic dimension of
the underlying mani-
fold. (B) The Swiss roll
data plus Gaussian
noise, with zero mean
and standard devation
equal to approximately

TECHNICAL COMMENTS

cussed in our original report (/), the suc-
cess of Isomap depends on being able to
choose a neighborhood size (€ or K) that is
neither so large that it introduces “short-
circuit” edges into the neighborhood graph,
nor so small that the graph becomes too
sparse to approximate geodesic paths accu-
rately. Short-circuit edges can lead to low-
dimensional embeddings that do not pre-
serve a manifold’s true topology, as Bala-
subramanian and Schwartz illustrate with a
choice of neighborhood size (¢ = 5) that
works well for our original noiseless data
but that is too large given the level of noise
(5) in their data. However, it is misleading
to  characterize our algorithm as
“topologically unstable” without consider-
ing its stability over a range of neighbor-
hood sizes. Indeed, this same level of noise
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data into 2D Euclidean space can be determined based on a trade-off between two cost functions: the
fraction of the variance in geodesic distance estimates not accounted for in the Euclidean embedding
[(6); black triangles], and the fraction of points not included in the largest connected component of the
neighborhood graph, and thus not included in the Euclidean embedding (gray filled circles, with vertical
scale three times that shown). Setting the neighborhood size (x axis) too large (above € = 6.2) masks
the intrinsic low-dimensional structure of the data set, leading to geodesic distance estimates that are
poorly represented by a 2D Euclidean embedding and thus a much higher residual variance. Setting the
neighborhood size too small (below € = 3.5) leaves out many points from the largest connected
component of the neighborhood graph, leading to the deletion of those points from the Isomap solution
and increased residual variance for the remaining points. A stable range of neighborhood sizes between
these two extremes leads to embeddings of the entire data set with near-zero residual variance. (F) The
same analysis can be used to select a reasonable neighborhood size for the noisy data. A neighborhood
size that works well for the noiseless data (€ = 5) is too large here, yielding a residual variance of 0.25.
However, a stable range of neighborhood sizes just slightly smaller (¢ between 3.5 and 4.6) yields
reasonable results, with residual variances all less than or equal to 0.01.

poses no difficulty for constructing a topol-
ogy-preserving embedding if the neighbor-
hood size is chosen just slightly smaller,
with € between 4.3 and 4.6 (Fig. 1D).

The suggestion by Balasubramanian and
Schwartz that there is no way to choose an
appropriate neighborhood size without “a pri-
ori information about the global geometry” of
the data is incorrect. Such a priori informa-
tion is useful in bounding the worst-case
performance of our algorithm as a function of
the number of data points (/), but it is not
necessary to use the algorithm in practice.
Fig. 1 illustrates one practical approach to
selecting an appropriate neighborhood size,
based on a trade-off between maximizing the
number of points captured in the Euclidean
embedding and minimizing the distortion of
the geodesic distance estimates (6). This
method successfully picks out appropriate
neighborhood sizes for both the noiseless
(Fig. 1E) and noisy (Fig. 1F) Swiss roll data
sets. In both cases, the topology-preserving
solution is stable, with a range of neighbor-
hood sizes that achieve close to zero distor-
tion of the geodesic distances while preserv-
ing the integrity of the underlying manifold.

For the Swiss roll with 1000 data points
and Gaussian additive noise, the stability
analysis illustrated in Fig. 1 can find neigh-
borhood sizes that yield topology-preserving
embeddings as long as the noise standard
deviation is less than approximately 12% of
the separation between branches of the man-
ifold (7). Given a larger number of data
points or a less curved manifold, the degree
of noise tolerance could be substantially bet-
ter. For instance, with 2000 data points on the
Swiss roll, the noise standard deviation may
be as high as 20% of the branch separation.
For the face images from our original paper
(1), topology-preserving embeddings are re-
liably found in the presence of Gaussian pixel
noise with standard deviation as high 70% of
each pixel’s standard deviation in the noiseless
data. More generally, short-circuit edges pose a
threat to any attempt to infer the global geom-
etry of a nonlinear data set from a bottom-up
estimate of the data’s topology; the locally lin-
ear embedding (LLE) algorithm (&) embodies a
different approach to this same general goal
and suffers from the same problem of short-
circuit edges in the presence of noisy or
sparse data (9). Improving the robustness of
these dimensionality reduction algorithms in
the presence of high noise levels—where
short-circuit edges cannot be eliminated sim-
ply by shrinking the neighborhood size—is
an important area for future research.
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(7)] to characterize how well the low-dimensional
Euclidean embedding captures the geodesic distances
estimated from the neighborhood graph. Lower re-
siduals indicate better-fitting solutions, with less
metric distortion.

. It is possible to analyze some of the effects of noise

through an extension of our asymptotic convergence
arguments for noiseless data (7, 70). The principal
danger with noisy data is that short-circuit edges
may appear in the neighborhood graph, significantly
changing its topology. In the noiseless situation,
there is an upper bound ¢, for €, below which we
avoid these gross topological errors. If the noise is
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in Fig. 1B.
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