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Cepstral Filtering on a Columnar Image Architecture:
A Fast Algorithm for Binocular Stereo Segmentation

YEHEZKEL YESHURUN anp ERIC L. SCHWARTZ

Abstract—Many primate visual cortex architectures (including the
human) have a prominent feature responsible for the mixing of left and
right eye visual data: ocular dominance columns represent thin (about
5-10 minutes of arc) strips of alternating left and right eye input to the
brain. In the present paper we show that such an architecture, when
operated upon with a cepstral filter, provides a strong cue for binoc-
ular stereopsis. Specifically, the vector of binocular disparity may be
easily identified in the output of the (columnar based) cepstral filter.
This algorithm is illustrated with application to a random dot stereo-
gram and to natural images. We suggest that this provides a fast al-
gorithm for stereo segmentation, in a machine vision context. In a bi-
ological context, this may provide a computational rationale for the
existence of columnar systems, both with regard to ocular mixing, and
to other visual modalities which have a columnar architecture.

Index Terms—Brain, neural networks, segmentation, stereo, vision.

1. INTRODUCTION

N this paper, an algorithm is presented which provides

a fast, one step analysis of the binocular disparity of a
pair of stereo images. This work is strongly motivated by
architectural features of the visual cortex of monkeys and
humans. and it has a close relationship to certain limita-
tions and advantages which are shared with human stereo
vision. Free use has been made of anatomical and psy-
chophysical data, in the explanation and discussion of the
algorithm. However, there is no attempt in the present
work to construct a model of human stereopsis: we pro-
pose this work as a favorable algorithm for computational
stereo applications.

Among the many cues which humans use for inferring
the structure of a three dimensional scene, binocular ster-
eopsis has been one of the most intensively investigated
(both algorithmically and psychophysically). This cue is
based on an (unknown) means of utilization of the slightly
different views of a three dimensional scene, as projected
onto the right and left retina. From a generic point of
view, this problem reduces to a matching or correlation
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of two slightly different scenes, in order to find the (vec-
tor) displacement of small corresponding patches of pro-
jected image.

Although apparently simple, fast solutions to this prob-
lem have been elusive. Many proposed algorithms are
based on a direct search for matching features in the left
and right half-images. Although some recent approaches
base this search on a relaxation, or variational approach,
possibly utilizing multiscale image data structures (e.g.,
[1]), this approach has become less common: it has been
pointed out [2] that inherently sequential approaches to
early vision, such as relaxation (or cooperative) algo-
rithms, are biologically implausible. The low pulse rate
of cortical neurons, together with the very rapid response
time of biological stereo segmentation argue against a se-
quential approach to stereo segmentation. Also, from a
machine vision viewpoint, it would seem desirable to have
a “‘one-shot’’ fast algorithm for stereo segmentation.

The present algorithm achieves this goal by using local
context, in parallel, to arrive at a ‘‘one shot’’ measure-
ment of the disparity vector.! A windowed cepstral filter,
operating on an interlaced image format which is inspired
by the structure of ocular dominance columns in primate
visual cortex, provides this ‘‘one-shot’’ performance.

The basic idea of the algorithm is to apply a cepstral
filter [3] to a stereo image which is formatted in a way
suggested by the ocular dominance column pattern of pri-
mate visual cortex [4]. Specifically, this pattern presents
the left and right images of a stereo pair in the form of
thin “‘strips’’ of image, alternating between left and right
half-images. Fig. 1 shows an example of a computer
graphic reproduction of this pattern, reconstructed in our
laboratory from the brain of a macaque monkey.

Cepstral filtering is a well known method of measuring
auditory “‘echo’’: the power spectrum of the log of the
power spectrum of an audio signal with an echo present
has a strong and easily identified component which is a
direct measure of the echo period [5], [3]. The binocular
disparity measurement then reduces to that of application
of a nonlinear local filter (cepstral filter), followed by peak
detection. This filter is applied within windows which
span an ocular dominance column pair. This approach

'Note that further processing of this sparse disparity map to C“fill in”
smooth surfaces may well require more complex processing. including
cooperativity. We discuss only the first stage of obtaining a sparse disparity
map in this paper.
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Fig. 1. The pattern of ocular dominance columns of a macaque monkey.
The cortex has been digitally sectioned in the true tangential plane [26],
numerically flattened with minimal error, and then the gray scale values
of tissue stain have been texture mapped onto the flat cortical model.
The data were obtained from a one eyed monkey whose brain was sub-
sequently stained with a metabolic marker (for cytochrome oxidase).
Darker regions indicate higher values of metabolism, i.e., they corre-
spond to the present, active eye. The periodic pattern of the ocular dom-
inance column system is clearly visible. In the context of the present
paper. each of the dark stripes represents image input from the left eye,
and cach of the lighter stripes represents image input from the right eye.
These strips are about 400 p wide, and correspond to perhaps 5 minutes
of arc in the visual field.

yields a strong stereo signal when presented with both
natural images and random dot stereograms, and is re-
sistant to image degradations such as blur, size difference,
and intensity changes.

Because this algorithm is applied within fixed “’win-
dows,”” it cannot resolve changes in binocular disparity
which occur within the window size. However, this is in
agreement with the properties of primate stereo vision.
Tyler has shown that humans cannot resolve changes in
binocular disparity which vary over a scale finer than
about 10 minutes of arc [6].2 This is consistent with our
algorithm, as the window size determined by the scale of
the ocular dominance column pattern of monkey visual
cortex lies within this region of angular size. Thus, the

*Tt is necessary here to distinguish between stereo-acuity, which repre-
sents the ability of humans to discriminate two nearby depth planes, and
stereo positional accuracy. Stereo acuity is extremely high (about 2 arc
seconds ): humans can discriminate two stimuli which differ in depth by
about 100 microns at three foot viewing distance. Stereo positional accuity,
however, represents the ability of humans to perceive rapid changes in
depth. This cannot be done when the rate of depth change is greater than
1 cycle /10 minutes of arc, which is about 10 times coarser than monocular
spatial acuity.
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windowing method of our algorithm is consistent with the
known spatial resolution of primate stereo vision. Our al-
gorithm, like the human visual system, has extremely high
stereo-acuity, but relatively low spatial acuity.

The present algorithm presents several unique proper-
ties:

1) It provides a computational justification for the ex-
istence of columnar interlacing, which is a common ar-
chitectural feature of primate cortex.

2) It provides a ‘‘one shot,”” or purely parallel algo-
rithm. There is no iterative component. Indeed, this al-
gorithm could be implemented in a straightforward way
by means of optical systems. It thus provides a candidate
for “’real time”’ performance in stereo segmentation.

3) It is in agreement with known psychophysical limi-
tations and anatomical properties of stereo vision.

We will now briefly describe some architectural fea-
tures of the primate visual system, and then the details of
the algorithm.

II. OcuLAR DOMINANCE COLUMN PATTERN

Many primates, including humans, possess ‘‘ocular
dominance columns’” in the primary visual cortex [4], [7].
The left and the right eye views of a scene interact for the
first time at the level of striate cortex, and this interaction
begins with the formatting of binocular data as thin (0.5
mm monkey; 1 mm human) strips of cortex which receive
terminals from either the left or right eye. Fig. 1 shows a
reconstruction of this pattern. Cortical magnification fac-
tor in the macaque monkey is estimated to be about 10-
20 mm /deg [8], [9]. Since the width of a pair of columns
is about 1 mm in macaque monkeys, the angular extent
of a column pair is about 1/10-2/10 degree, or 6-12
minutes of arc.? Since visual acuity is about 1 minute of
arc, a column pair extends over about 6-12 ‘‘resolution’’
units for acuity.

The function, if any, of the ocular dominance column
pattern is currently unknown. One of the principal moti-
vations of the present research has been to investigate al-
gorithms which might be related to architectural features
of striate cortex, such as this columnar pattern. For pur-
poses of this discussion, the most notable feature of this
pattern is that small patches of the left and right eye view
of the scene are placed next to one another in layer IV of
striate cortex. Fig. 2(a) schematically illustrates this sit-
uation. The task of stereo segmentation is to determine
the vector displacement of these two image patches.

III. CeEpsTRAL FILTERING

There are two aspects to the present algorithm. The first
of these depends on the concept of ‘‘cepstral filter.”” The
second depends on the use of a columnar image architec-
ture. The Appendix provides a more detailed analysis of

*Note that we use the fact that the within-column magnification factor
is really twice that of the global magnification factor usually measured, due
to the double representation of columns within layer IV of cortex. as dis-
cussed by [4].
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Fig. 2. (a) A pair of image patches. There is both horizontal and vertical
disparity. (b) The power spectrum of (a). The origin of the frequency
plane has been shifted to the center of the frame. (c) The cepstrum of
(a). The disparity terms occur as bright spots in the cepstrum. These
spots are easier to see in a thresholded version, shown in (d). The box
marks a region of the cepstrum, described in the text, which does not
need to be searched for a disparity signal. (e) The cepstrum of the left
half image of (a). (f) The subtraction of the left cepstrum from the in-
terlaced cepstrum. Only the two disparity ‘‘dots™” remain.

some of the complexities which are associated with the
‘‘columnar architecture.’’

Consider an interlaced image f(x, y) to be composed
of a single columnar pair. Also, assume, for simplicity,
that there is no binocular disparity, and that the data con-
sist simply of an image patch s(x, y) (the ‘‘right-eye’’
patch), and an identical patch “‘butted’’ against it (the left
eye patch). Since there is assumed to be no disparity, the
left and right eye images are identical, and the width of a
single column is “*D.”” We can mathematically represent
this image pair as follows. (The * operator represents two-
dimensional convolution.)

flxx) = s(x,y) * {8(x, y) + 8(x = D, y)} (1)
The Fourier transform of such an image pair is
F(u, v) = S(u, v) - {1 + ™79}, (2)

By forming the logarithm of F(u, v ), the product struc-
ture becomes a sum:

log F(u, v) = log S(u, v) + log (1 + ¢ ™) (3)

and the spectrum of (3) will have a prominent term lo-
cated at the magnitude of the shift (D, 0). In the Appen-
dix, we derive the Fourier transform of the term log (1 +
e~™ 4y "and show that it consists of a principal term at
the location (D, 0), and a series of harmonics at integral
multiples, with much smaller amplitude.

Equations (1)-(3) describe a simple case of two iden-
tical images, placed side by side (simulating a small sec-
tion of ‘‘columnar’’ image). It is easy to extend this sit-
uation to cases where a left or right shift of one of the
image pairs has occurred, in order to simulate *‘binocular

disparity.”” The same kind of analysis will apply, and it
is possible to locate a strong peak in the cepstrum of the
image patch whose location is equal to the basic columnar
shift D, with an additional term in the disparity added to
(or subtracted from) this shift. This situation is best illus-
trated with a simple image example.

Fig. 2(a) shows a small patch of image. There is a hor-
izontal and vertical component of disparity. Fig. 2(b)
shows the power spectrum of this image. Fig. 2(c) shows
the cepstrum (power spectrum of log power spectrum). In
these power spectra, zero frequency has been shifted to
the center of the figure, so that there is bilateral symmetry
about the origin. There are two bright dots, representing
the disparity term in the cepstrum. These dots are made
apparent by thresholding the cepstrum, as in Fig. 2(d).
Note that the units of the cepstrum are the same as the
original physical units of the image. This can be demon-
strated by measuring the linear spacing of two features in
the image plane (e.g., the eyes), and then measuring the
distance from the origin to the peak in the cepstrum. Thus,
spatial position in the cepstrum is a direct measure of the
“*disparity’” of the left and right half images.

The image dependent terms in the cepstrum (i.e., the
cepstrum of the half-images themselves) can be removed
easily, since we have access to the two half-images. Fig.
2(e) shows the cepstrum of the left half image of Fig.
2(a). Subtracting this cepstrum from the total cepstrum,
in Fig. 2(f), we isolate the disparity vector, shown as two
dots whose vector displacement from the origin is the dis-
parity vector.

In practice, we have not found it necessary to subtract
the image dependent terms, as shown in Fig. 2(f). A sim-
ple peak detection algorithm has been capable of isolating
and measuring the binocular disparity directly from the
cepstrum of the columnar image pair, as shown in Fig.
2(c).

The key idea in this work is that the columnar interlac-
ing shifts the disparity term, in the cepstral plane, by an
amount ‘‘D,”” where ‘‘D’’ is the column size. Then, as
long as peak detection is restricted to a region of the cep-
stral plane within [D /2, 3D /2], it is quite easy to locate
this term as a ‘‘bright dot’” or peak, with no competing
areas of high intensity (see the Appendix for a detailed
discussion). Thus, in this case, it is a simple matter to
measure the disparity. It is quite interesting to note that
the present algorithm has its simplest case for disparities
within the region of the width of a column, because hu-
man vision also finds its easiest stereo task when pre-
sented with stereo pairs whose disparity is within a psy-
chophysically defined region called ‘‘Panum’s area’’ [10],
[11]. In humans, Panum’s area corresponds to 5-10 min-
utes of arc, and it also corresponds to the estimated extent
of human ocular dominance columns [12]. These issues
are discussed more extensively in the Appendix.

IV. SUMMARY OF THE ALGORITHM

Given a stereo pair, i.e., two images of the same scene,
the algorithm is applied as follows.
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1) The two images are interlaced to yield pairs of cor-
responding ‘‘patches.’” These patches can be of arbitrary
shape and might even overlap, although only nonoverlap-
ping rectangular areas are demonstrated here. One might
also apply smoothing operators (e.g., Hanning windows)
to the windowed images, although we have not found it
necessary to do, so, as the stereo signal is extremely
strong.

The size of the **window’’ is essentially determined by
the size of the ‘‘ocular dominance columns’” which cause
the interlacing. Based on the human and monkey visual
systems, this window size is estimated to be within the
range of 5-10 minutes of arc.

2) Each window is processed (in parallel) by the cep-
stral operator.

3) The display vector is then found by a peak detection
algorithm applied to the windowed cepstrum of the stereo
pair. For disparities whose magnitude is < D, i.e., ‘‘Pan-
um’s area,”’ the search is restricted to the region [D/2,
3D /2] in the cepstral plane.

’

V. PERFORMANCE OF THE ALGORITHM

The windowed cepstral filter is easy to implement (it
depends on little more than access to an FFT algorithm).
Its complexity is O(N - log N ), from the FFT stage. Full
parallelism is easy to achieve, since the windowed filter
can be run simultaneously (there is no interaction between
neighboring image patches). Since this algorithm relies
mainly on an ability to estimate power spectral densities,
as well as a simple (logarithmic) nonlinearity, it would
seem to be easy to implement in the context of optical
computation.

Fig. 3 shows an example of a natural scene, in which a
window of about 5-10 minutes of arc is indicated. In or-
der to obtain sufficient resolution from this scene, we have
photographically expanded this small segment of it, and
performed the cepstral analysis on it. This corresponds to
a pair of (foveal) ocular dominance column patches. Fig.
3(c) shows the cepstrum of the ‘‘columnar’’ pair of Fig.
3(b). The cepstral signal is evident as the two bright dots
on the x-axis.

It is technically difficult to fully analyze a natural scene
at this resolution, since we are essentially working on a
scale in which human visual acuity is equivalent to the
pixel size of the image. In other work, we show that this
requires a (conventional, constant resolution) image of
size 16 000 x 16 000 pixels (see Fig. 6). A more sensible
path at this point would be to use (as does the human
system) space variant image representations. However, we
show in Fig. 4 a 3500 x 3500 random dot stereogram,
fully segmented by the present algorithm. This stereo pair
depicts a ‘‘pac man’’ that is detectable only by binocular
cues. We have scaled this stereogram to match the follow-
ing parameters of human vision. The size of each box of
the stereogram subtends about 8 degrees of field, so that
the percept within the box subtends about 5 degrees. The
size of the windows in the box is 5 minutes of arc. Thus,
the positional accuracy of this segmentation is no better
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(a)

(b)

(c)

Fig. 3. (a) One frame of a stereo pair of a natural scene. (b) A patch of
this stereo-pair, corresponding to five minutes of arc. The area of the
patch is indicated by the arrow in the figure. (¢) The cepstrum of the
interlaced patches of (b).

Fig. 4. (a) A random dot stereogram, in which a **pac-man’" figure exists
as a pure stereo signal. (b) The segmented figure, after windowed cep-
stral filtering and peak detection. The gray scale of the segmented figure
is proportional to stereo disparity. The original stereo frames were con-
structed at 3500 x 3500 pixels, and correspond, for typical reading dis-
tances. to about eight degrees of field. In other words. if the size of the
box is 4 cm, and is held at 30 cm from the eye. it will subtend 8 degrees.
The window size used was 5 minutes of arc (32 pixels).

than 5 minutes of arc. This lack of fine detail is evident
in slight aliasing of the boundaries of the stereo percept.
Based on Tyler’s measurements, this aliasing, or an
equivalent lack of positional detail, should be present in
human segmentation of the stereo pair shown in Fig. 4.
Humans do not see aliased edges in random dot stereo-
grams (based on our subjective experience), but merely
cannot resolve fine positional detail, below about 10 min-
utes of arc, in pure stereo images. Stereo fusion, which
we have not addressed, would need to be considered to
complete the segmentation algorithm presented in this pa-
per, and it would be of interest to compare the subjective
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Fig. 5. (a) A random dot stereogram. The right image has been blurred
(Gaussian convolution), and it has been *‘scribbled.”” (b) A small seg-
ment of a natural scene, in which blur and **scribbling’" has also been
applied. (¢) A small segment of a natural scene, in which the left frame
has been histogram equalized, changing its intensity values. The dispar-
ity peaks are clearly evident, outside of the region between {D/2},
{3D/2}. in each thresholded cepstrum.

qualities of such a fusional algorithm with human perfor-
mance.

A. Preprocessing of Stereo Images

We emphasize that the input to this algorithm is not
necessarily a ‘‘gray scale’’ image, as we have used in the
figures. Naturally, any preprocessing (e.g., high pass fil-
tering, edge enhancement, etc.) is compatible with this
approach. However, it is important to emphasize that we
obtain good performance without image preprocessing.
Simple gray scale data, as in the figures, is sufficient for
good performance. This is in marked contrast to other ste-
reo algorithms, which require edge enhancement or fea-
ture detection in order to perform at all.

Small regions of the image which have no spatial detail
will of course fail to yield a disparity signal. This is true
of any matching algorithm.

B. Robusmess of Algorithm

We have found the columnar cepstral algorithm to resist
a wide range of image degradations. Fig. 5(a) shows a
pair of image patches (random dot stereogram) in which
a Guassian blur was applied to the right frame, and then
some random ‘‘scribbling’’ was added. The threshold
cepstrum is shown below. Fig. 5(b) shows a pair of nat-
ural images, with the same Gaussian blur and scribbling
applied. The thresholded cepstrum is also shown beneath
it. Fig. 5(c) is a natural image pair, in which the left frame

2
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> %

(c) (d)

Fig. 6. (a) A wide angle fish eye view of a scene in the hall of our labo-
ratory. A ladder is to the right, an eyc chart is in the very center of the
frame (almost invisible). The original version of this scene was digitized
to an effective resolution of 16000 X 16000 pixels by a polar coordinate
mosaic techniqiue. A “*blow-up’’ of the central region of this original
frame is shown in (b). This is an eye-chart. and the distance to the chart
was 20 feet. In the original. line 7 of the chart could be easily read.
indicating an effective ‘*acuity’’ of 20 /30. or about 1.5 minutes of arc.
The purpose of this work was to simulate a wide angle scene (about 100
degrees ). roughly comparable to human vision, at human visual acuity.
(c) This scene blurred by a space variant filter which is modeled after
human visual acuity. (d) The image of (a), modeled in terms of a com-
plex logarithmic model [12] of human visual cortex. The eye-chart oc-
cupies almost half of the surface of visual cortex, although it occupies a
tiny fraction of the original scene. The ladder, and the windows of the
original are compressed to almost the same size as the centrally fixated
letters of the eye-chart. This illustrates the tremendous space variant
compression of human vision. Variations in linear size of about 100: 1
(10" in solid angle) occur from the center to the periphery of the human
visual system.

was histogram equalized,* and the right frame was not,
with the thresholded cepstrum shown below. Size changes
of up to 15 percent and rotations of ten degrees of one of
the stereo frames can be routinely accepted by this algo-
rithm. Considerable intensity changes can be applied to
one of the stereo frames without disrupting the algorithm.
In Fig. 5, we show an example in which one of the stereo
pairs is ‘‘histogram equalized’’ and the other is left in its
original (low contrast) state. The algorithm of the present
paper was not disturbed by this intensity difference, nor
by simple additive intensity increments of 50 percent to
one image of a stereo pair. In fact, positive and negative
stereo pairs can be processed with no difficulty, as is ev-
ident from the mathematical structure of the cepstral fil-
ter. Humans can fuse stereo pairs which differ consider-
ably in intensity, and can fuse positive-negative pairs of
line stereograms, but cannot fuse positive-negative ran-
dom dot stereograms [14]. In other work [15], we show

*Histogram equalization is a method of expanding the contrast of an
image. The histogram of gray levels of the original image is obtained, and
a remapping of gray-scale levels is performed so that the resultant histo-
gram of gray-scale values approximates some desired (e.g., uniform) dis-
tribution |13].
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Fig. 7. The top shows a random (white noise) signal (1-D) which is re-
peated with a slight shift, to simulate a *‘columnar’” stereo signal in one
dimension. Below the auto-correlation and cross-correlation of this sig-
nal is shown. The *‘disparity’’ is indicated by the small peak in the cor-
relation spectra (arrow). On the bottom, right the cepstrum of the same
signal is shown. The peak indicating the disparity is has a much higher
signal-to-noise ratio than that of the correlation examples.

that these details are compatible with a cepstral filter.
Similarly, humans can fuse stereo pairs which have size
differences of up to 15 percent and rotational differences
of up to 15 degrees. In these respects, the cepstral algo-
rithm has similar robustness to human stereo vision.

C. Relation to Other Correlational Methods

The ceptral filter is closely related to auto-correlation.
The question naturally arises whether auto-correlation
would perform as well as the cepstral filter in this appli-
cation. Similarly, does simple cross-correlation of two
stereo scenes perform well?

Our experience with auto-correlation applied to a col-
umnar architecture, using the same data with cepstral fil-
tering, is that the cepstral filter has superior signal-to-noise
properties.

Fig. 7 shows an example of the same 1-D data set, for-
matted as a single left-right “‘column,’” and processed by
auto-correlation, cross-correlation, and cepstrum. The
cepstral transform clearly has superior signal-to-noise ra-
tio.

Since the computational cost of the cepstrum is vir-
tually identical (both in complexity and in reality!) to auto-
correlation, and its performance on columnar images is
clearly superior, it is the method of choice in the present
context.

VI. DiscussioN

Recent approaches to stereo segmentation (see [10] for
review) typically have a sequential, iterative, or relaxa-
tion component. Thus, some search procedure (e.g., re-
laxation, or search over multiple scales) is used to resolve

ambiguities in local image matches. As Marr [2] has
pointed out, these approaches do not seem biologically
plausible: the ability of biological systems to function in
extremely short time intervals seems to argue against
elaborate variational, cooperative, or relaxation pro-
cesses. In fact, any iterative step at all seems questionable
when considering the performance of preattentive seg-
mentation in humans: a time period of about 200 ms is
enough for a complete preattentive segmentation of a
complex scene. Yet, 200 ms is about the same amount of
time it takes a signal to propagate through all layers of
visual cortex, from the retina. The implication is that
preattentive segmentation in humans is a ‘‘one-shot’’ pro-
cedure, since it seems to occupy little more than a single
pass through the cortical *‘machine.”

The cepstral algorithm described in this paper is purely
parallel, so it is not subject to Marr’s critique of iterative
algorithms. Without columnar image format, this algo-
rithm would be problematic. If the two images were sim-
ply superimposed (e.g., by addition), the performance
would be severely degraded, since there would be no clear
“‘echo’’ signal. Moreover, the very small disparity terms
in the cepstrum would be masked by neighboring fre-
quency components in the images.

A. Limitations of this Algorithm

The principal limitation of this algorithm is that, inso-
far as it is a ‘‘textural’’ approach, it can only operate in
windows of size greater than the resolution limit of the
image.

Ocular dominance columns are perhaps five times larger
than the basic acuity limit of the visual system. This is a
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comfortable range for our window operator, and is in
agreement with psychophysical measurements of the spa-
tial limits of disparity sensitivity in humans.

Other algorithmic approaches, based on local feature
matches for example, might be capable of extending this
limit to within the range of acuity. However, they do so
at considerable computational expense, and would, in the
process, exceed the actual abilities of the human visual
system. (We are implicitly considering the performance
of human vision as optimal in this context, rather than
consider an unconstrained definition of the term ‘‘vi-
sion.’”)

B. Biological Implementation and Relation to ‘‘Spatial
Frequency Channels’’

The method of implementation which we have used to
simulate the cepstral filter requires little more than access
to the spatial frequency content (power spectrum) of an
interlaced stereo pair. For many years, there has been
considerable interest in the ‘‘spatial frequency’’ tuning
properties of the human visual system. It is interesting to
note that an appropriate set of bandpass frequency filters
are adequate to implement the cepstral filter of this paper.
In pilot work, we have succeeded in simulating an esti-
mation of the power spectrum of a columnar image using
medium bandwidth (1.5 octave) filters to provide cepstral
estimates which are comparable to those shown in the
present paper, which were obtained from a digital FFT.

It is important to emphasize that access to a Fourier
transform is not necessary for the present algorithm. Thus,
phase information is not required. Estimates of power
spectral density which could be provided by simple space
domain filtering are sufficient.

We have not yet studied the implications of cepstral fil-
tering in a biological context. Nevertheless, it is interest-
ing to point out that a recursive application of spatial fil-
tering, as in the cepstral filter, can have powerful image
processing capabilities if the underlying architecture (e.g.,
columns) is correct. Finally, a prediction associated with
the present algorithm is worth mentioning. Although bi-
nocularly tuned neurons are known to exist in primate vi-
sual cortex [16], it is not known whether there is any sys-
tematic spatial organization (e.g., disparity columns). An
arrangement of disparity tuning in a direction perpendic-
ular to the boundaries of ocular dominance columns would
be a strong support for the cepstral filtering mechanism
proposed in this paper.

C. Generalization to Other Columnar Systems

The columnar architecture which is at the basis of the
present algorithm is common in the primate neo-cortex.
Orientation of edges® and direction of motion are two

*The orientation column system of primate cortex would provide. when
operated upon by the cepstral algorithm, a measure of boundary curvature:
difference of orientation is curvature. Thus, stereo and boundary curvature
extraction could be provided by the same underlying mechanism, operating
on the respective columnar systems of ocular dominance and orientation
selectivity.

other modalities which are known to be formatted in col-
umnar terms. Color and spatial frequency have been
claimed to have columnar architecture, and regions of
frontal cortex with unknown function are also known to
have a columnar architecture [17]. In earlier work, the
frequency modulation aspect of ocular dominance col-
umns was pointed out [18], and it was suggested that col-
umnar systems occur in cortex whenever two slightly dif-
ferent modalities need to be compared, and their
differences extracted. The cepstral operator is sufficiently
simple, and the columnar architecture sufficiently wide-
spread, to provide a hope that perhaps a generic operation
of the visual system is provided by the analysis of this
paper. If so, then support would be provided for the no-
tion that the visual system uses the elaborate functional
architecture which it has constructed for computational
purposes.

D. Relation to Other Psychophysical Phenomena and
Other Models of Stereo

Many other biological and machine approaches to ste-
teo have been proposed (see [10], [19], [20] for review,
and [21], [1], [22], for some examples of well known
models). However, none of this work makes use of the
formatting of stereo data in visual cortex, in the form of
ocular dominance columns, as is the basis for the present
algorithm.

There are also many complex psychophysical details re-
lated to stereo vision. For example, the classical concept
of Panum’s area used in the present paper has been re-
vised due to work of Burt and Julesz [23]. It must be em-
phasized that our present work is not meant to provide a
biological theory of stereo. We merely seek to point out
that some of the first-order spatial constants of stereo vi-
sion match in a rough way with the size of the ocular
dominance column system, and may indicate that a col-
umnar-windowed algorithm, of the kind outlined in this
paper, may occur at one or more levels of the visual sys-
tem. Note that the ocular dominance columns of V-1 pro-
vide one scale, as discussed in the text, but that ocular
dominance may occur also in V-2 and perhaps elsewhere.
This may explain some of the complexity in the details of
the concept of ‘‘Panum’s area.’’

E. Space Variant Vision

In order to make effective use of the algorithm of this
paper, it is necessary to use windows which approximate
the size of a pair of human ocular dominance columns.
This is estimated to be about 6-12 minutes of arc (fo-
veally). It is reasonable to require perhaps 20 pixels in
such a window. Thus, a 512 X 512 pixel image would
span only a few degrees. Clearly, a much higher resoltu-
tion sensor than 512 X 512 is desirable if any appreciable
angular extent is to be covered.® An interesting alternative
would be to use a space variant sensor (i.e., a foveal sen-

°Note that the random dot stereogram of Fig. 4 was of size 3500 x
3500, in order to cover 8 degrees of simulated field at 5 minute /window
resolution!
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sor), patterned after the human visual system [12]. This
would allow a wide angle of coverage, but still provide a
reasonable allocation of sensor resources, mimicking the
approach of biological visual systems. In other work, we
have begun to study the image processing aspects of such
space variant systems (see Fig. 6 for a computer simula-
tion of a natural scene, imaged by a space variant system
such as primate visual cortex) [24], [25]. It is interesting
to note the possible synergy between the biologically mo-
tivated windowed cepstral filter, and the need to consider
space variant (e.g., logarithmic) visual systems.

VII. CoNCLUSION

Computation consists of algorithms applied to data
structures. By means of formatting visual data, in the
brain, in terms of adjacent ‘‘columns,”” a disparity signal
is modulated onto a particular component of the cepstrum

evaluate the Fourier transform
feed
S e™ log (1 + ¢ ™ “) du

n+1 6(X - nD)
—"n .

=2 (-1) (2)
Thus, we get delta functions at locations which are inte-
gral multiples of the shift term D. The weight of these
delta functions decreases rapidly, and, in particular, there
is only a single delta function in the interval [D/2,
3D/2].

B. Multiple Disparities Due to the Columnar
Architecture

The situation is best illustrated graphically. Consider
the table below:

Actual

LO R1 L1 R2 L2 dl d2 Shift
XXXXXX 123456 123456 789ABC 789ABC 6 — 0
XXXXxx 1 123456 234567 789ABC 89ABCx 5 1 -1
Xxxx12 123456 345678 789ABC 9ABCxx 4 2 -2
xxx123 123456 456789 789ABC ABCxxx 3 — =3
xx1234 123456 56789A 789ABC BCxxxx 2 4 —4
x12345 123456 6789AB 789ABC CXXXXX 1 5 -5
XXXXXX 123456 x12345 T789ABC 6789AB 7 13 1
XXXXXX 123456 xx1234 789ABC 56789A 8 14 2
XXXXXX 123456 xxx123 789ABC 456789 9 15 3
XXXXXX 123456 xxxx12 789ABC 345678 10 16 4
XXXXXX 123456 xXxxx1 789ABC 234567 11 17 5
XXXXXX 123456 XXXXXX 789ABC 123456 — 18 6

of the cortical image. Thus, good data structure (colum-
nar interlacing) allows a simple algorithm (cepstral filter)
to provide a robust solution to a computationally intensive
application.

A possible lesson from biological vision may be the im-
portance of using simple algorithmic procedures, applied
to novel spatial architectures. At the same time, there is
a tradeoff of positional resolution for discrimination: hu-
mans can discriminate stereo differences with extraordi-
nary accuracy (stereo-acuity), but cannot resolve high
spatial frequencies in the stereo modality.

These design choices, which are not intuitively ob-
vious, are the product of an extremely long ‘‘burn in’’:
evolution. Perhaps robotics vision applications can profit
from this process.

APPENDIX
A. Multiple Disparities Due to Large Windows

The log Fourier transform of an interlaced image pair
is given by

log F(u, v) = log S(u, v) + log (1 + ™). (1)

The power spectrum of this image is the cepstrum. We
show that the second term of (1) above consists of a series
of delta functions whose spatial location in the cepstrum
is a measure of the shift D.

Using the expansion log (1 + z) = ZX¥
(=1)"*Y(z"/n), valid forzz < 1, and z # —1, we can

k]

We have constructed a schematic model of *‘columns’
1 unit high and 6 units wide, depicted by LO to L2. An
image is simulated in this table as a sequence of the char-
acters ‘‘123456789ABC”’, and ‘‘x’’ represents arbitrary
data. The table summarizes the possible disparity matches
which can exist as a function of the ‘‘actual shift’” of the
underlying images. The complication in this simulation is
due to a “‘wrap-around’’ condition which is introduced by
the existence of periodic columns of interlaced image, and
by considering windows of more then two adjacent col-
umns. Thus, the complexity of this situation is due to the
actual architectural complexity of the primate visual cor-
tex.

The possible disparity values which can exist are indi-
cated in the table as d1 and d2. If the algorithm compares
only adjacent colums (e.g., R1 and L1), then a single peak
will be detected by the algorithm. However, its intensity
is related to the degree of correspondence between these
columns: for actual shift of —1, for example, the two col-
umns share the part of the image represented by ‘23456,
while for an actual shift of —4, this part is ‘*56”" only,
which will yield a weaker cepstral peak. Thus, comparing
two adjacent columns, disparities up to the size of the
column can be detected, but the corresponding peak is
attenuated as the shift grows, until it vanishes when it
reaches the size of the column.

Another point which should be addressed is the possi-
bility that the *‘disparity signal’” will be masked by the
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signal of the image [see (1)] for large negative shifts (e.g.,
—4 and —5 in the table). This could be avoided by either
considering disparities in the range [D/2, 3D /2] (i.e.,
actual shift of —3 to 3 in the table), or, as mentioned in
the description of the cepstral filter, by subtracting the
cepstrum of the image from the columnar cepstrum before
the peak detection.

Thus, we feel that the execution of this algorithm is
simplest for disparities whose range allows the shifted im-
age terms to remain within neighboring windows. This
will occur for disparities in the range of a single column
width, which corresponds to about 6-12 minutes of arc.

Panum’s area [11] refers to a range of stereo disparity
over which humans can easily ‘‘fuse’’ stereo frames. It
is possible for humans to process stereo at larger dispar-
ities, but special conditions are required: first, fusion is
effected within Panum’s area, and then the stereo frames
are ‘‘pulled’” slowly to larger disparities.

It is thus interesting to note that our column based al-
gorithm has similar performance characteristics to human
stereo. It is limited in positional resolution, as outlined in
the text, but is also limited in the range over which it can
most simply process stereo images. Both of these limita-
tions are determined by the width of ocular dominance
columns. Thus, there is a basic scale factor in human ste-
reo, of magnitude 5-10 minutes /arc, which determines
the limit in both positional resolution for stereo, and the
limiting region for easy stereo processing. Our algorithm
has very similar limitations.
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