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Abstract. In previous work, it was suggested that the
sequence regularity property of cortical neurons could
be accounted for if the local geometric structure of the
cortex were a recapituation of the global complex
logarithmic structure of the retinotopic mapping. This
model is developed in detail: the excitatory and in-
hibitory structure of cortical receptive fields may be
approximated by a complex logarithmic local geo-
metry, coupled with an intra-cortical lateral inhibition
operator which may flow unidirectionally yet still
create “rotating” receptive field structure. The direction
of intra-cortical lateral inhibition follows the borders of
cortical ocular dominance columns, which are the
approximate images under the global complex logarith-
mic mapping, of exponentially spaced, horizontal
straight lines in the visual field. Two different topologi-
cal structures are discussed for the local cortical
manifold. The binocular trigger features of cortical
neurons follow from the same geometric model, and the
ratio of binocular to monocular cortical cells is related
to the size and shape of cortical dendritic tree’s by an
application of integral geometry. Recent results in
optical pattern recognition are cited to suggest that the
rotation and size invariant properties of the cortical
map are essential to any cross-correlational basis for
stereopsis. Finally, a meromorphic function is pre-
sented which 1s both locally and globally complex
logarithmic in its structure, and therefore represents the
model presented in this and previous papers in a concise
mathematical form. This function is closely related to
the description of a Karman vortex pattern, in fluid
mechanics, and leads to the suggestion that the bound-
ary conditions of layer IV of the cortex (i.e. periodic
ocular dominance columns) are causally related to the
existence of sequence regularity in the cortex. The
developmental implications of this statement are that
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the specification of neural connections in the cortex
may follow directly, both locally and globally, from the
detailed nature of the cortical boundary conditions (i.e.
anatomy), coupled with general physico-mathematical
considerations of continuity and differentiability in the
neural fiber flow.

Introduction

The global analytic structure of the retinotopic map-
ping of the primate cortex has been characterized by a
complex logarithmic mapping of the retinal surface to
the cortical surface; the receptotopic structure of the
secondary and medial visual cortex, the inferior pul-
vinar nucleus, and the somatotopic mapping (cortical
area S— 1) have a similar analytic structure (Schwartz,
1976, 1977a). In this work, it was pointed out that the
description of neuronal mappings via analytic func-
tions (conformal mappings) has a simple developmental
interpretation: analytic functions, such as the complex
logarithm, represent “potential flow” on surfaces, sub-
ject to boundary conditions imposed by the “shape” of
the surface. Thus, the development of specific neuronal
mappings may be “encoded” by minimal rules such as
those describing the flow of fluids, the diffusion of
chemical substances, etc. This idea was developed in
detail in subsequent work (Schwartz, 1977b) where
Dirichlet’s Principle was used to demonstrate that the
minimization of the average magnitude of the anatomi-
cal magnification factor (per unit area) is sufficient to
encode the structure of a detailed receptotopic map-
ping, based on the shape or boundary conditions of the
available tissue surfaces. In the monkey, this follows
from the demonstration that the density of retinal
ganglion cells implies an annular domain which is
logarithmically structured, as originalty suggested (in
the cat) by Fischer (1973). The cortical domain is
characterized as a rectilinear strip, and the retinal
annulus is conformally equivalent to the cortical strip,



under the complex logarithmic mapping. In the gold-
fish, the retina may be characterized as a disk (con-
stant cell density) and the optic tectum as an ellipse. The
unit disk is mapped to an ellipse by a certain Jacobian
elliptic conformal mapping, and the level lines of this
function are in agreement with the experimentally
determined retino-tectal mappings of the goldfish.
Specific experimental tests of this theory are outlined in
the same paper. The present paper is a detailed
development of a second suggestion presented in
Schwartz (1976, 1977a). The sequence regularity prop-
erty of the visual cortex of the primate (and the cat)
suggests that the local structure of the cortical map is
also described by the complex logarithm function: the
cortex is a concatenated logarithmic map. This follows
because the angle of orientation tuning of cortical cells
rotates through equal angular increments as an elec-
trode traverses equal linear steps across the surface of
the cortex. Since the complex logarithm function as-
signs a polar angle in the visual field to a linear
coordinate in the cortex, it is intuitively evident that
dendritic summation of an afferent input to the cortex
that is locally logarithmic in its structure would provide
this sequence regularity property. The detailed pre-
sentation of this statement requires a discussion of
intra-cortical inhibition, the nature of the images of the
dendritic tree’s of cortical cells, the topological struc-
ture of the local cortical mapping, and a model for the
“packing” of adjascent hypercolumn mappings in the
cortex.

In the present paper, a geometric model for the local
structure of the afferent input to the visual cortex is
presented ; this model accounts in a logically consistent
way for a variety of anatomical and physiological
features of the visual cortex, and leads to the following
statements: 1) The borders of the ocular dominance
columns in the primate are the approximate mapping
under the complex logarithm of horizontal, exponen-
tially spaced lines in the visual field; 2) The images of
the dendritic tree’s of cortical cells, under the local
logarithmic mapping, are not particularly elongated, in
agreement with experimental data from the cat and the
primate, which implies: 3) Intra-cortical inhibition
must be responsible for the existence of “line tuning”
and inhibitory sidebands, as suggested by Creutzfeld et
al. (1974), and Schiller et al. (1976b). However, since the
angle of both the excitatory center and the inhibitory
surround rotates (sequence regularity), the intra-
cortical connections responsible for this lateral in-
hibition must be highly “tangled”, unless; 4) The local
structure of the cortical mapping is a recapitulation of
the global logarithmic structure, which causes the
afferent input to effectively “rotate”, allowing intra-
cortical inhibitory connections to lie parallel to one
another. This directional intra-cortical inhibition is
mathematically modeled by a modification of the

Laplacian operator (which becomes a “directional
derivative”), and the direction of this inhibition is
suggested to lie parallel to the ocular dominance
column boundaries ; 5) Orientation columns are there-
fore a joint product of directional lateral inhibition, and
the locally logarithmic structure of the cortex: they
need not have an observablc anatomical substratc as
“columns”. 6) A simple application of integral geo-
metry (“Bufon’s Needle™) allows a calculation of the
ratio of binocular to monocular cortical cells, which is
in good agreement with experiment, and which makes
definite predictions for the perimeter of the dendritic
tree’s of cortical “S” and “CX” typc cells. 7) The
topological structure of a cortical hypercolumn is
discussed, and the possibility is raised that the standard
cylindrical Riemann surface of the logarithm function
may have to be modified to a nonoriented cylindrical
surface for the local cortical map, in order to achieve a
symmetric hypercolumn structure. This gives some
insight into Werner’s (1970) demonstration of the non-
oriented topological structure of the somatosensory
cortex: higher topological structure, in a biological
context, may arise from the need to satisfy simple
boundary conditions and symmetry requirements.
8) The binocular trigger features of the primate cortex,
as measured by Hubel and Wiesel (1970), follow from
the model of cortical geometry, A formula is derived
relating binocular disparity to the cortical magnifi-
cation factor, the amount of shift of neighboring
receptive fields, and the size of a “hypercolumn”. The
large magnification factor for the parafoveal striate
cortex predicts values of binocular disparity tuning that
are extremely small, possibly explaining the lack of
observed disparity tuning in the primate striate cortex.
9) Since the monocular and binocular trigger features
of the visual cortex may be accounted for by a simple
geometric structuring of the afferent input, then the
identification of the psychological process of “feature
extraction” with the neuronal trigger features is called
into question. The relationship between structure and
function in the cortex might be more aptly described in
terms of “computational geometry” rather than “neu-
ronal feature extraction”. This (Gestalt) approach to
the psychology of the visual cortex is supported by
10) Recent results in optical pattern recognition which
indicate that if stereopsis is to depend on cross-
correlation between the left and right eye input, then the
size and rotation invariant properties of the complex
logarithmic retinotopic mapping (Chaikin and
Weiman, 1977; Casasent and Psaltis, 1977; Schwartz,
1977a) are critical to maintaining a reasonable signal to
noise ratio. 11) A mermomorphic function is presented
which represents a concatenated complex logarithmic
map, i.e. it is locally and globally logarithmic. This map
concisely summarizes the geometric model presented in
this paper, and represents a convenient mathematical
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Fig. 2. On the top left is shown the iso-density lines ot the complex
logarithmic retinal cell density. The polar coordinates r and @ are
shown, and the black arca at the center corresponds to the region
where retinal ganglion cell density (X type ganglion cells) falls rapidly
in both the cat and the monkey : this is the singularity of the logarithm
function. On the right is the mapping of the retina, under the complex
logarithm function. The small shaded area is meant to represent a
“hypercolumn™, which is the basic unit of the cortical mosaic. This
mapping represents a logarithmic potential on a surface of cylindrical
topology (the Points A, and B are the same point). On the bottom is
shown an alternate topology: this figure represents a logarithmic
mapping on a nonorientable cylinder, ie. a Moebius strip, which is
shown at the bottom left, {compare Points A-D in the retina, and on
the two logarithmic mappings). The dimensions of 500 4 by 700y are
estimates of the size of one half of a hypercolumn from the data of
Hubel and Wiesel {(1974)

The vertical meridian (V), the horizontal meridian (H)
and the approximate foveal representation (F) are
shown in the figure. Levay et al. remark that the
representation of the ocular dominance columns tend
to run along lines that are parallel to the horizontal
meridian for the central 10” of the field. In Figure [ is
shown the mapping, under the complex logarithm
function, of exponentially spaced, horizontal lines.
There is suggestive agreement between these figures.
The mapping function of Figure 1 is in(z+ 1), which
Is regular at the origin (z=0), which 1s essentially
identical to In(z) beyond the central [-2° of visuatl field,
which provides an analytic representation for the

(unmapped) central [“ of field, and which duplicates the
“C” shaped boundary of the cortex, along the lunate
sulcus (the representation of the vertical meridian in the
primate).

Levay et al. (1975) have suggested that the equal
width of the ocular dominance strips i1s due to a
competition for space between the left and right eye
maps which tends to equalize the area of the two
representations, causing a random consolidation of
neighboring columns, with the consequent production
of “blind endings”, as in Figure 1. Nevertheless, the fact
that the ocular dominance columns run along trajec-
tories which are approximately predictable, based on
the complex logarithm function, 1s fundamental. Tt will
become clear that the borders of the ocular dominance
columns play a basic role in “organizing” the local
logarithmic structure of the cortex in the present
model: intra-cortical lateral inhibition and sequence
regularity run parallel to these borders, while binocular
summation runs perpendicular to them. The ocular
dominance columns provide the link between the axes
of the global and the local mappings of the cortex.

The Global and Local Cortical Mappings:
Analytic and Topological Structure

Figure 2 illustrates the analytic and topological struc-
ture of the global logarithmic mapping.

The circular pattern on the left is identified with the
retina (visual field). The cell density of X type ganglion
cells in the cat (Fischer, 1973 ; Mcllwain, 1976) and the
monkey retina (Rolls and Cowey, 1970) is described by
an inverse square law. Ganglian cell density is inversely
proportional to the square of the eccentricity, The
inverse square law is the same as that which describes
the fields of classical potential theory {electrostatic,
gravitational, etc.). A planar problem in clectrostatics
{the potential around a line charge) is described by a
complex logarithmic potential function because of the
inverse square dependence of the field (Panafsky and
Phillips, 1962). In an exactly analgous manner, a
complex logarithmic density potential can be intro-
duced for the retina (Schwartz, 1977b). The rectangular
strip on the right of Figure 2 shows the mapping of the
retina to the cortex, under the complex logarithm
function. A rectangular strip is conformally equivalent
(Ahlfors, 1966) to the retinal annulus. This mapping
provides a system which is isotropic in retinal cell
density (Fischer, 1973) and provides an approximate
description of the actual retinotopic mapping of the
primate cortex (Schwartz, 1976, 1977a),

The topological structure of the complex logarith-
mic mapping is that of a cylinder. In Figure 2 {right), the
rays @=0and =27 are located at opposite ends of the



summary of the anatomical and physiological features
of striate cortex in the primate, 12) it is pointed out that
the previously mentioned function is closely related to
the mathematical deseription of a Karman vortex street
pattern in two dimensional fluid mechanics. This
provides possible insight into the nature of cortical
development, since it extends a previously developed
mode! of neural development, based on irrotational
fluid flow (via the Laplace equation), to the much more
sophisticated, rotational flow represented by the
Navier-Stokes equation. Based on this observation, it is
argued that the encoding of sequence regularity in the
cortex may follow directly from the boundary con-
ditions of the local cortical anatomy (i.e. the existence of
ocular dominance columns), just as the global ret-
inotopic map has been suggested to follow from the
global retinal and cortical “shape™ (Schwartz, 1977b).
Thus, a single unified mathematical approach may be
capable of summarizing a wide range of disparate
aspects of striate cortex phenomenology.

Dendritic Summation in the Visual Cortex

Colonnier {1964) studied tangential sections of Golgi
stained rat, cat and monkey visual cortex. He found
that the shape of the dendritic trees of the cortical cells
was clongated, with a typical ratio of 1.5:1. The long
axis was predominantly parallel to the representation of
the vertical meridian (i.e. the lunate sulcus in the
primate). Since Levay et al. (1975) remark that the
ocular dominance column boundaries run primarily in
a dircction parallel to the horizontal meridian, for the
central 107 of field, the orientation of the cortical
dendritic trees is primarily perpendicular to the ocular
dominance column boundaries. Based on the observed
dendritic asymmetry, Colonnier suggested that den-
dritic summation of cortical afferents could explain
the fact that cortical cells respond to elongated stimuli
in the visual ficld (Le. edges, or lines). Hubel and Wiesel
(1962) have suggested that convergence of a line of
geniculate cells onto a single cortical cell could explain
this line tuning property of cortical cells. In later work,
Mcllwain (1976) pointed out that dendritic summation
of an anisotropic distribution of cortical (or tectal)
afferents could yield images of dendritic tree’s that were
clongated.

However, Creutzfeld et al. (1974) have found that
the distribution of EPSP’s arriving at a single cortical
cell (in the cat) suggests a circularly symmetric exci-
tatory field, and concluded that the highly elongated
nature of many cortical receptive fields, as well as the
presence of inhibitory sidebands and directional selec-
tivity, must depend on intra-cortical lateral inhibition.
Since the angle of orientation of the cortical receptive
ficlds rotates as one traverses the cortex the intra-
cortical connections responsible for orientation tuning

Fig. 1. On top is shown the reconstruction of tangential sections of the
striate cortex (silver stain) of Levay ct al. (1975). Alternate bands
represent left eye and right eye input. The approximate repre-
sentations of the vertical meridian (V), the horizontal meridian (H)
and the foveal representation (F) have been added to the original in
order to facilitate comparison with the theoretical version shown
below. This is the mapping, under the function In(z + 1) of a series of
parallel exponentially spaced horizontal straight lines in the visual
field. The exponential spacing was chosen in order to provide equal
width of the “ocular dominance columns™ at their intersection with
the representation of the vertical meridian (“V” in the figure)

must “rotate” also. An alternative possibility is that the
direction of intra-cortical lateral inhibition is constant,
but that the underlying mapping of cortical afferents
effectively “rotates”. This suggestion, implicit in the
proposed logarithmic structure of the cortex, will now
be developed in detail.

Ocular Dominance Column Trajectories

The characterization of the global retinotopic mapping
of the cortex by the complex logarithm function was
based on physiological measurements (magnification
factor and the mapping of global landmarks). Further
support for this characterization comes from the his-
tological reconstruction of cortical ocular dominance
column trajectories of Levay et al. (1975). Ocular
dominance columns are strips of cortex, approximately
S00 p wide, which alternately represent left eye and
right eye input to the cortex. Levay et al. (1975) have
reconstructed the ocular dominance column pattern of
the cortex, and the results of this are shown in Figure 1.



cortical strip, but are actually idential points in the
retina (or visual field). The cylinder forms a standard
Riemann surface for the logarithm function (Springer,
1953). Anatomically, the two hemispheric represen-
tations of the cortex are joined by the corpus callosum
about the representation of the vertical meridian
(Hubel and Wiesel, 1967), and this supports the in-
terpretation of the cortical topology as that of a
cylinder.

In Figurce 2, a small patch of the global cortical map
is shaded, and this is meant to suggest the basic
hypercolumn unit of cortical structure. A complete
range of angular orientations is represented by a
hypercolumn, as well as both left and right eye input
(Hubel and Wiesel, 1974). For the moment, the analytic
structure of half of a hypercolumn is addressed (i.e. the
geometric structure of a single ocular dominance
column); the packing of adjacent ocular dominance
columns will be discussed in relation to binocular
trigger features. Sequence regularity implies that the
analytic structure of the hypercolumn is described by
the complex logarithm function (Schwartz, 1976,
1977a), and a possible description would be simply a
reiteration of the global topology and geometry, as in
the top of Figure 2. However, it may be observed that
this figure is asymmetric: the foveal representation is
located at the lateral edge of the cortex. A symmetric
complex logarithmic mapping may be obtained by
altering the local topological structure of the cortical
surface, from an orientable cylinder to a non-orientable
cylinder. This is achieved by “cutting” the mapping at
the top of Figure 2, about the line §==, and folding it
over, back and up.

The result of this operation is shown at the bottom
of Figure 2; the Points A-D, have been identified in
both figures. The result of this procedure is that the
center of the local receptive field is mapped to the center
strip of the hypercolumn. The topological identification
of the resulting (local) cortical manifold as a non-
orientable cylinder is proven by identifying the points at
the top and bottom of the map (bottom of Fig. 2). The
opposite direction of these “identified” points is the
standard topological description of a Moebius strip
(Spivak, 1970), which is also shown in the figure, for
reference.

The two mappings of Figure 2 differ only in the
underlying topological structure of the manifolds in
which they are embedded. The global logarithmic
mapping is described by the cylindrical topology of the
top of Figure 2. Either of the two mappings of Figure 2
could supply a sequence regularity property, via dendritic
summation, However, the non-oriented version
{Moebius strip) of the logarithmic mapping will be used
in the following discussion, because it is symmetric
about the local receptive field center.

The “cylindrical” topology of Figure 2 would lead
to cortical receptive fields that were coincident with the
radii of the circle centered about the local r.f. center ; the
“Moebius Cylinder” of Figure 2 would lead to receptive
fields that were co-incident with the diameters of the
same circle. Therefore, the detailed nature of sequence
regularity (Hubel and Wiesel, 1974) would allow a
choice between these possibilities. Also, the “Moebius”
version of the logarithmic mapping should be under-
stood as a “construction”, as indicated in Figure 2,
rather than a well defined mathematical mapping, thus
allowing the evasion of the question of defining a
Riemann surface on a non-orientable manifold
[formally, Riemann surfaces must be orientable
(Springer, 1953)].

The introduction of surfaces of higher topological
structure in a biological context may seem exotic.
However, there is a precedent for considering higher
topological surfaces in the primate sensory system.
Werner has demonstrated (1970) that the topological
structure of the somatosensory cortex is that of a non-
oriented torus, ie. a Klein Bottle. Moreover, the
analytic structure of this mapping is similar to that of
the complex logarithm (Schwartz, 19774). In this con-
text, the proposed description of the local structure of
the visual cortex is not so far-fetched: in fact, some
insight may be shed on the problem of the topological
constraints that are associated with receptotopic map-
pings. In order to satisfy boundary conditions (of
symmetry, with neighboring tissue surfaces, etc.), higher
order topological manifolds may be relevant to the
description of neuronal mappings.

Figure 2 (bottom) shows the proposed gecometric
structure for a hypercolumn. A question naturally
arises concerning the anatomical and physiological
identification of this local mapping in the retinal {(or
lateral geniculate) plane. The basic columnar unit of the
lateral geniculate is the direction column. The distri-
bution of receptive field centers in a direction column is
denser in the center, tapering off in a gradual (Gaussian)
circularly symmetric distribution (Sanderson, 1971).

This argument suggests the following analogy:
retina:cortex:  direction  column.  hypercolumn.
Regardless of whether or not this analogy 1s valid, the
local mapping of the cortical afferents, described by
Figure 2, succeeds in providing a variety of neuronal
trigger features of the cortex, as will now be formally
demonstrated.

Dendritic Images under the Local
Logarithmic Mapping

Colonnier (1964) measured the shapes and sizes of the
dendritic tree’s of cortical stellate and pyramidal cells in
the rat, the cat, and the monkey. For cortical stellate
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Fig. 3. The rectangles A-D, are idealizations of tangential sections of
cortical stellate and pyramidal cells, after Colonier. “Cell” D is
atypically large, and is included for that reason. The images of these
“cells” under the logarithmic mapping of Figure 2 (bottom) are shown
in Columns 1-3, which represent lateral distance from the center of
the hypercolumn, in 75 p steps. Movement in the vertical dimension
causes identical images, with a rotation proportional to the vertical
movement. The images (excitatory field centers) are not particularly
sensitive to the size, shape or position of the “cell”, except for the
largest cell Type D

cells, he reported the typical shape to be “cruciform”,
with the long axis usually more than 1.5 times the length
of the short axis. The average length of the long axis was
136.7 u (standard deviation 43 y) for uncut dendritic
tree’s: this criterion of “uncut” biases the sample
towards smaller cells, and Colonnier reports a grand
average of 266.4 u (standard deviation 120.4 p) for the
size of the dendritic tree’s of stellate cells. In the
following discussion, a “typical” cortical dendritic tree
will be characterized as a rectangle, with an aspect ratio
of 1.5:1, and with the long side equal to 250 y. Thus, the
“typical” cells of Figure 3 are meant to conform roughly
to Colonnier’s data. Cells A and B represent an
elongated dendritic tree of aspect ratio (1.5:1) whose
long axis (250 p) is oriented parallel to the horizontal
meridian. Cell “C” is a symmetric cell of approximately
the same size, and Cell “D” represents a dendritic tree
that is larger than average (500 p). The Nos. 1-3 refer to
distance from the center of the hypercolumn. Cell 1 is
located at the center of the hypercolumn (Fig. 1) and
Cells 2 and 3 are 75 and 150u from the center

respectively, measured along the horizontal coordinate
of Figure | (bottom). The shapes of these “cells” are
mapped in polar coordinate sectors by the logarithmic
mapping, and shown in Figure 3. The general tendency
of these dendritic tree images 1s to be of roughly the
same degree of elongation as the cell shape itself. The
anisotropy of the mapping does not contribute greatly to
any elongation of the dendritic tree images, except for the
largest cell, “D”. In this case, the cell size 1s of the same
order of magnitude as the size of the hypercolumn, and
a dendritic tree image is formed with a marked
elongation in the vertical direction. It is interesting to
point out that this image resembles the shape of a
hypercomplex receptive field (Hubel and Wiesel, 1962)
Le. it is large and has a distinct angular “kink™ in it. The
principle conclusion to make from Figure 3 is that,
given the scale of a cortical hypercolumn based on the
data of Hubel and Wiesel (1974), and the average cells
sizes measured by Colonnier (1964) the anisotropy of the
local structure of the cortex is not sufficient, except for
the larger cells that may be present, to provide a
significant elongation of the receptive field shape.

Intra-Cortical Lateral Inhibition

The dendritic images of Figure 3 are in agreement with
the shape of the excitatory centers of cortical receptive
fields. Creutzfeldt et al. (1974) found, in the cat, that the
excitatory centers of cortical cells tended to be roughly
circular to elliptical, with eccentricities in the range of
1-1.5. Schiller et al. (1976a) found, in the primate, that
the excitatory centers of cortical receptive fields also
were roughly circular to elliptical. The elongated nature
of cortical receptive fields that is typically recorded with
clongated stimuli is to some extent an artifact of the
stimuli themselves, and must depend on the presence a
of neural mechanism in addition to dendritic summa-
tion of excitatory input. Creutzfeldt et al. (1974) and
Schiller et al. (1976b) have proposed intra-cortical
inhibitory mechanisms to account for cortical line
tuning. However, the nature of this intra-cortical
inhibition, regardless of the details of its neural sub-
strate, seems to be tightly constrained by the geometric
fact of sequence regularity.

Lateral inhibition is often modeled mathematically
by the “Laplacian”, which is the simplest second order
isotropic difference operator:
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However, the Laplacian represents isotropic lateral
inhibition; in order to model directional lateral in-



hibition, a directional derivative operator may be
defined as follows:
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The angle 0 determines the amount of anisotropy of
the lateral inhibition. For 0=r/2, the operator of (2)
reduces to a simple differencing parallel to the y axis,
which is identified as the local axis along which
orientation tuning is changing. Hubel and Wiesel (1972)
have suggested that this direction may lie parallel to the
ocular dominance column-boundaries. Although this
statement has not been experimentally verified, it is
supported by the development of binocular trigger
features that is presented later in this paper. Thus, the
direction of intra-cortical inhibition, which is parallel to
the direction of “sequence regularity”, is assumed to lie
parallel to the ocular dominance column boundaries.

A simple graphic simulation of intra-cortical in-
hibition under this assumption is shown in Figure 4. A
narrow excitatory center, flanked by larger inhibitory
bands is produced. As Creutzfeldt et al. (1974) have
emphasized, intra-cortical lateral inhibition seems to be
nccessary to produce elongated receptive fields, in-
hibitory sidebands, and directional sensitivity. The
principal contribution of the present work to this
question is to provide a geometrical interpretation for
this lateral inhibition operation, and in pointing out the
potential relationships between the direction of intra-
cortical inhibition, sequence regularity, and the ocular
dominance column-boundaries.

Schiller et al. (1976b) have suggested three possible
alternatives for the neuro-physiological basis ol direc-
tional cortical inhibition: [)dendritic summation along
oriented dendritic trees; 2) anisotropic distribution of
inhibitory synapses ; and 3) anisotropic geometry of the
axons of inhibitory interneurons. The first of these
suggestions may be related to the cruciform shape of the
dendritic trees of cortical neurons reported by
Colonnier (1964). Since the long axes of the dendritic
tree are oriented predominantly parallel to the repre-
sentation of the vertical meridian (according to
Colonnier) then these axes lic approximately per-
pendicular to the ocular dominance column-
boundaries (Fig. 1). The remaining perpendicular seg-
ment of the dendritic tree then must lie predominantly
parallel to the ocular dominance column-boundary,
and would be a candidate for suggestion (1) above. In
the motor cortex, the presumed interneurons are basket
cells, and their axons follow long parallel trajectories
(Marin-Padilla, 1970). Should a similar axon geometry
be found in the visual cortex, it could provide a basis for

4

Fig. 4. A graphical simulation of the directional lateral inhibition
operator of Equation {2). On the bottom, the image of Cells A and C
are subtracted from Cell B, with the results shown on the right: an
“excitatory center” is produced, with “inhibitory flanks™. This simple
differencing, superimposed on a complex logarithmic mapping,
would cause both the inhibitory and excitatory fields of the cell to
rotate together, i.e. sequence regularity. The direction of intra-cortical
inhibition need not change, since the underlying mapping is effec-
tively “rotating”. The letters L, R, L refer to the ocular dominance
columns which are schematically shown at the top

suggestion (3) above. In any case, the fundamental role
played by the ocular dominance column boundaries in
providing a local coordinate system for the cortical
afferent geometry is the main point to be emphasized in
the present model.

Sequence Regularity and Orientation Columns

The complex logarithmic structure for the hyper-
column of Figure 2 provides a sequence regularity
property, as shown in Figure 5. All cells in a slab
perpendicular to the direction of lateral inhibition (i.e.
along ocular dominance column boundarics) will have
receptive fields that are “tilted” by the same amount.
Equal linear steps along the direction of lateral in-
hibition ie. parallel to the ocular dominance column
boundaries, will result in equal angular changes in
orientation tuning. The orientation columns are speci-
fied indirectly, by a combination of directional cortical
inhibition and afferent geometry. They need not have a
direct anatomical substrate, and, in fact, none has been
found to date. The principal point that emerges from
this analysis is that the ocular dominance column
boundaries are of central importance in organizing the
cortical geometry.
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Fig. 5. Oricntation “columns”™ would exist, by virtue of the afferent
logarithmic geometry and the lateral inhibition operator suggested in
this paper. These “columns” would not have an observable anatomi-
cal substrate, but would instead be the indirect result of the cortical
afferent geometry

Ocular Dominance Distributions
and the Bufon Needle Problem

The distribution of cells in the primate visual cortex
with respect to binocular excitatory input forms a
continuum with the percentage of binocular cells,
relative to monocular cells, reported as 60 % (Hubel and
Wiesel, 1968), 43 % (Poggio, 1972), and 49 % (Schiller et
al., 1976a), for the classification of “S” type cortical
cells. Under the assumption that binocular excitatory
input arises in the primate via summation across ocular
dominance column boundaries, it is possible to relate
the ocular dominance distribution (binocularity) to the
average cell size and shape, and the width of the ocular
dominance columns. The “Bufon Needle” problem
refers to the calculation of the probability (“p”) that a
“needle” oflength 2/, when dropped on a parallel grid of
ruled lines of spacing 2q, will intersect a line of the grid.
The “Bufon Needle” has been generalized to the case of
a convex polygon of perimeter 28 intersecting a grid of
parallel lines, and the corresponding probability is:
(Gnedenko, 1967).
0= (3)

na

[dentifying the “polygon™ as the dendritic tree of a
cortical cell, the parallel grid as the ocular dominance
column strips (Fig. 1) and the probability of intersection
of the polygon with the grid as the percentage of
binocular cells, then it is possible to get a simple
estimate of the ratio of binocular to monocular cells.
Substituting the value of 500 p for the width of the grid
(Levay et al., 1975) and a dendritic tree of average
rectangular cross section 250 u x 160 u (Colonnier,
1963) then (3) yields a probability of 52%, which is in

fair agreement with the experimental measurements of
Hubel and Wiesel (1968), Poggio (1972), and Schiller et
al. (1976a). Schiller’s estimate of 49 % binocularity refers
to his category of “S™ type cortical cells ; his category of
“CX” type cells showed 89% binocularity, Under the
assumption that (3) is a valid estimate of binocularity,
this would imply a dendritic tree. for Schiller’s “CX”
type cells, of 420 px 280 . In the “Bufon Needle”
problem, the shape of the polygon is irrelevant ; only the
perimeter enters the equation, so that these rough
estimates are not sensitive to the characterization of the
cell dendritic tree as “cruciform”™ (Colonnier, 1963).
Thus, the size of the cortical dendritic tree’s and the
spacing of the ocular dominance columns provide a
clear prediction for the relationship of cortical his-
tology to cortical binocular neurophysiology, and this
prediction is accessible to direct experimental test.

Binocular Disparity Tuning

Cortical cells in the visual cortex of the cat tend to have
a horizontal component of disparity in the location of
their left and right eye receptive fields. Because of this
trigger feature of disparity, it has been speculated that
these cells function as “feature detectors” for stereo-
scoptic depth perception (Barlow et al., 1967). In the
primate, Hubel and Wiesel (1970) have found two types
of binocular depth cells, which they termed “ordinary”
and “depth” type cells. Ordinary cells show a moderate
summation of stimulation to the two eyes. They fire in
response to monocular and binocular stimulation, and
have their receptive fields in corresponding parts of the
two retinal projections: they have zero measurable
disparity. All cells in area 17 are “ordinary” type cells.
The second category of “depth™ cells give a weak
response to stimulation of either eye alone, but have
both a horizontal and vertical component to their
disparity. In area 18, approximately equal numbers of
“ordinary” and “depth” type cells occur, beyond 3-4°
from the foveal representation. The salient feature of
the binocular organization of area 18 is the linking of
receptive field structure to binocular disparity. The
disparity of “depth” cells is in a direction perpendicular
to the direction of orientation tuning. Thus, vertically
oriented cells have a horizontal disparity, horizontal
cells have little measurable disparity, and obliquely
oriented cells have both a vertical and horizontal
component of disparity. Neighboring “depth” cells tend
to have the same disparity, and “ordinary” and “depth”
cells are arranged in clusters, or columns, on a scale
which is larger than that of the “orientation columns”.

The qualitative and quantitative description of the
binocular trigger features of area 17 and area 8 is
highly detailed, and provides a good test of the local



structure proposed in Figure 2 of this paper. [f cortical
trigger features arise in general from dendritic sum-
mation of this afferent geometry, then these very well
described binocular trigger features should emerge
naturally from the present model. A strong hint that
this is the case derives from noting that there are ba-
sically two types of ocular dominance column bound-
aries. Type | boundaries lie between a left and right
ocular dominance column within a single hypercolumn
(L.e. referring to corresponding parts of the left and right
retina). Type 2 boundaries lie between a left and right
hypercolumn belonging to adjacent hypercolumns (i.e.
referring to retinal positions that are shifted with
respect to one another). Summation across Type |
boundaries results in “ordinary” type cells, i.e. with no
disparity, while summation across Type 2 boundaries
results in “depth” type cells, since the shifted receptive
fields of adjacent hypercolumns would be expected to
contribute some disparity to the left and right receptive
Jftelds. Furthermore, the 50/50 % distribution of the two
types of cells would then follow naturally from the
equal numbers of the two types of ocular dominance
column boundaries, and the clustering together of the
two types of cells would be explained also.

In order to illustrate this suggestion, a specific
model must be assumed for the “packing” of neighbor-
ing hypercolumns. The basic hypercolumn structure is
indicated in Figure 2. The cylindrical topological
structure of Figure 2 (top) yields results that are
substantially the same, and simpler to work out, than
the non-oriented logarithmic structure of Figure 2
(bottom). If this “Moebius Strip” mapping is used, then
the “packing” of neighboring hypercolumns must be as
in Figure 6, in order for “Type 17 cells to have identical
receptive {ields in the left and right eye visual fields.

The cortex may be “tessalated” by using the map-
ping of Figure 2 (bottom) for the left cye set of ocular
dominance columns, and “flipping” the mapping of
Figure 2 (bottom) for the right eye set of ocular
dominance columns, as shown in Figure 6. The Points
A-D of Figure 2 are reproduced in this figure. The right
eyc ocular dominance column is lightly shaded, and two
adjacent hypercolumns are shown in the figure. Cells
X~Z {indicated by heavily shaded rectangles) straddle
Type 1 ocular dominance column boundaries. The left
and right eye receptive fields are shown in Figure 6, and
these “ordinary” cells will have identical receptive fields.
Cells U-W straddle Type 2 ocular dominance boun-
daries, and these “depth™ type cells will have receptive
fields with components of disparity that depend entirely
on the “shift” between the receptive ficlds of adjacent
hypercolumns. This shift, shown by the vector S, in
Figure 6, will have the receptive field structure indicated
in the figure. For a shift with a purely horizontal
component, the vertically oriented cells will have a
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Fig. 6. On top, the placing of two adjacent ocular dominance
columns, to form a single “hypercolumn™ is shown, The Points A-D,
have been retained from Figure 2 (bottom) and the non-oriented
version of the logarithmic map is used for illustration. The left and
right eye ocular dominance columns must alternately be mirror
tmages, in order to achieve the correct mixture of binocular trigger
features. The two types of ocular dominance column boundaries that
exist are shown, and labelled “Type 1" (intra-hypercolumn) and
“Type 2” (interhypercolumn). Thus, Cells X-Z would have “ordinary”
properties and Cells U -W would have “depth” type properties. On the
bottom is shown a representation of the receptive field images of these
cells; the right eye is shaded, both in the cortical representation (top)
and the visual field representation (bottom). H1 and H2 refer to
neighboring hypercolumns, whose visual ficld representations are
shifted by an amount §
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purely horizontal component of disparity, and horizon-
tally oriented cells will have little measurable disparity,
in agreement with experiment (Hubel and Wiesel, 1970).

The direction of shift, S, of neighboring receptive
fields is perpendicular to the border’s of the ocular
dominance columns. The vector S of Figure 6, which
was chosen to agree with Hubel and Wiesel's obser-
vations (1970) would imply a direction of ocular
dominance column boundaries that is vertical in the
visual field. As was mentioned earlier (Fig. 1), the
dircction of ocular dominance column boundaries for
the central 107 of visual ficld is horizontal. However,
beyond 107, the direction of the ocular dominance
column’s turns abruptly to the perpendicular direction
(1.c. vertically in the visual ficld) (Levay et al., 1975).
Within 3 4 of the fovcal representation, there arc lew
“depth™ type cells, with the percentage increasing with
further movement into the periphery. Apparently,
most of the “depth” type cells were encountered
further out in the periphery, and this may justify the
presumed “vertical” orientation of the ocular domi-
nance column boundarics shown in Figure 6.

There is a direct relationship between the cortical
magnification factor (M, mm/degree), the magnitude
and direction of the vector shift § describing the visual
field projection of neighboring hypercolumns, the
width of the ocular dominance columns (0.5 mm), and
the vector disparity (d, degrees):

0.5 mm
= —-§ @)
M mm/degree

where § is measured in a fraction of a receptive field (i.e.
50% overlap of neighboring r.f.’s). Equation (4) suggests
a possible reason for the lack of “depth™ type cells in
area 17 of the monkey. The large magnification factor
ol the primate would make “depth” cells, arising from
the geometric summation suggested in this paper, very
difficult 1o detect experimentally. A value for cortical
magnilication of 6 mm/degree (Danicl and Whitteridge,
1962) for the central visual field would result, via
Equation (4), in a predicted disparity of 1/24°, assuming
a shift of 50 % between neighboring hypercolumns. The
striate magnification factor is still roughly I mm/degree
at 10" of eccentricity (d =0.25"). Although Hubel and
Wiesel (1970) do not report on the range of eccentricity
for which they searched in area 17 for “depth” type cells,
(4) suggests that these cells would appear to be absent,
except at fairly large eccentricity.

In the cat, the cortical magnification factor is
roughly 5 times smaller than the primate, and so
binocular disparity tuning should be easily detectable in
area 17, which is the case. The cortical magnification
factorin area 18 of the primate is considerably less than
inarea 17, due to the smaller tissue area ;even in area 18,

Hubel and Wiesel (1970) found “depth™ type cells to be
numerous in the more peripheral visual field. Thus, the
lack of “depth” type cells in area 17 could be due to the
experimental difficulty induced by the large value of the
cortical magnification factor, in the primate.

Vorticity, the Navier-Stokes Equation
and the Analytic Structure of the Cortical Map

In the previous discussion, a particular topology and
tessalation of the cortical mosaic was assumed, which,
together with the suggestion of local logarithmic struc-
ture, provides the proper mixture of monocular and
binocular cortical trigger features. Specifically, a non-
orientable (“Moebius strip”) topology was proposed, to
achieve symmetry about the local receptive field center,
and adjacent left-eye—right eye hypercolumn patches
were “flipped” with respect to one another, in order to
achieve a 50-50 % mixture of “ordinary” and “disparity”
type binocular cells. However, it 1s possible to use the
orientable cylindrical topology of Figure 2 (i.e. that of
the global cortical map, which is the standard Riemann
surface for the logarithm function), and to motivate the
“flipping” of left and right eye local patches in a natural
way that has thc advantage of providing a single
analytic function to describe both the local and global
cortical structure. Moreover, this analytic (or techni-
cally, meromorphic) function has been presented in the
literature of fluid mechanics as a description of the
“Karman vortex street” (Rosenhead, 1929), and an
analysis of the basis of vorticity in {luid mechanics
provides potential insight into the nature of the de-
velopmental process, which is a direct extension of
previous work relating neural development to the
theory of potential flow (Schwartz, 1977b).

A meromorphic function (i.c. an analytic function)
with a finite number of zeroes and poles (Ahlfors, 1966)
which is both locally and globally complex logarithmic
1s:

In[en{lnz, k}] (3)

where cn(u, k) is a Jacobian elliptic function, and k is
chosen so that the ratio of the real and imaginary semi-
periods of the elliptic function are equal to the ratio of
the spacing of zero’s to zero’s, and zero's to poles in the
grid of logarithmic maps. This function is presented,
and discussed, in Morse and Feshbach (1953, pp. 1242);
it represents the complex electrostatic potential ol an
array of line charges placed between two conducting
cylinders. Due to limitations of space, it is not possible
to discuss in detail (5); it is merely stated, with reference
to Morse and Feshbach (1953), that this particular
meromorphic function describes a map which is both
locally and globally logarithmic in its structure, and so



may be taken, following the arguments presented in this
and previous (Schwartz, 1976, 1977a-c) papers, as a
concise representation of the analytic structure of the
retinotopic mapping of the primate striate cortex. The
“flipping” of adjascent local cortical maps, which was
assumed in the previous discussion, is a natural con-
sequence of the analytic structure of Equation (5), since
the local logarithmic structure of this mapping is
represented alternately by +In(z—z,) and —In(z—z),
where z,, is the local hypercolumn center. The alternat-
ing sign of the local logarithmic map therefore yields
patches which are related by reflection through the
local origin. Finally, a potentially important insight
into the development of the striate cortex is provided by
noting that (5) is related to the structure of an array of
Karman vortex streets in fluid mechanics (Rosenhead,
1929), and suggests the possibility that the existence of
rotating receptive field structurc in the cortex is in-
timately related to the boundary conditions that are
imposed by the regularly alternating ocular dominance
strips of layer IV of the striate cortex. This statement
will be briefly explained in the following section; the
interested reader s referred to work currently in
preparation for a more detailed account (Schwartz,
1977d).

A Karman vortex street is created by the passage of
a bluff object through a viscid fluid, i.e. by the tip of a
coffee spoon moving in water, or the tip of an airplane
wing moving through air. The structure of a Karman
vortex street is that of a series of logarithmic vortex
patterns, spinning clockwise and anit-clockwise, in
alternation (Fig. 7). The existence of vortex patterns in
fluid flow may be traced to the existence of tangential
discontinuities in the fluid velocity, and we note that
velocity (Le. the derivative of the complex potential) is
equal to magnification factor, in the context of the
primate retinotopic mapping (Schwartz, 1977a).

Again, in the context of the neural mapping,
discontinuities in the magnification factor are clearly
and obviously supplied by the alternating ocular dom-
inance column structure of the cortical map. This
situation is expressed by Rosenhead (1930): “... the
effect... of a surface of discontinuity (in a fluid flow) is
to produce concentrations of vorticity at equal intervals
along the surface...”. These equally spaced vortex
patterns are clearly similar to the pattern of cortical
afferent input that has been suggested in the present
paper, and the developmental significance of this
remark may be interpreted in the light of previous
discussions of the specification of visual connections in
the vertebrate nervous system (Schwartz, 1977b). In this
work, tt was pointed out that the boundary conditions
of the tissue surfaces of the primate retina and cortex
{and the goldfish retina and optic tectum) are sufficient
to cncode the detailed structure of the receptotopic

Fig. 7. A photograph of a cylinder moving in a viscous fluid
(Reynolds number =250), with 2 Karman vortex street following in
the wake. Reprinted from Theorctical Hydrodynamics, L. M, Milne-
Thomson, MacMillan (1955)

mappings. provided that the mapping is a solution of
the Laplace equation, i.e. that it is a “potential flow”.

The mathematics of this statement is identical to
that of the solution of the classical, inviscid, irrotational
flow of a fluid (Morse and Feshbach, 1953). However,
this characterization of the goldfish and primate ret-
inotopic mappings describes the structure of the global
mappings, and not the local mapping discussed at
length in the present work. [n order to introduce local
logarithmic structure, it is neccssary to extend the
analogy of fluid flow from the simple description
provided by the Laplace equation, to the more sophisti-
cated representation of fluid flow provided by the
Navier-Stokes equation, which mcludes the effects of
vorticity, or rotational motion. The mathematical de-
tails of this program arc non-trivial, since analytic
solutions of the Navier-Stokes equation are few and far
between. Nevertheless, insight into the nature of the
solutions of this non-lincar, partial differential cqua-
tion may be obtained from the following approxima-
tion to the classical Navier-Stokes equation, which is
valid for plastic flow, in which the cffects of tangential
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discontinuity arc the dominant factor (i.e. low Reynolds
number) (Campbell, 1973):

VrE=0
E=Vxv.

In this approximation, the Navier-Stokes equation
indicates that the distribution of vorticity (&) is a
solution to the Laplace equation, and hence the vor-
ticity (which may be thought of as the density of local
logarithmic structure) is distributed with a logarithmic
pattern. This statement follows from the fact that the
logarithm function is the solution to thc Laplace
equation with circular boundary conditions (Ahlfors,
1966).

Thus, the logarithmic pattern of logarithmic maps
that is represented by (5), and which is suggested to
represent the afferent input to the primate retinotopic
mapping in the present work, may be thought of as a
solution to the approximation to the Navier-Stokes
equation of (5). Finally, it may be pointed out that the
Karman vortex street is stable to small perturbations
only for a pattern of vortex spacing (i.e. vertical/hori-
zontal spacing) which is equal to 0.28 (Lamb, 1945).
Thus, there is a natural scale associated with the
formation of a Karman vortex street, and this scale is
not inconsistent with the scale of the primate cortex,
using the values of ocular dominance column width
(300500 y1) and hypercolumn length (approximately
1000 1) suggested by Hubel and Wiesel (1974).
Quantitative measurement of the scale of the cortical
pattern could thus supply circumstantial evidence in
support of the Karman vortex street model of the
cortical map.

The details of cortical trigger features, following
from the Karman vortex model of the cortical map,
yield a ratio of “ordinary” to “disparity” type cells of
25/75%, as may be verified by the reader, following
Figure 6. This value is not in agreement with the 50/50 %
ratio reported by Hubel and Wiesel (1974). For this
reason, the alternate tessalation of the cortex presented
carlier in this paper, may be considered, particularly
since the binocular trigger features of the primate
cortex have not been extensively studied. The potential
importance, with respect to neural development, of the
discussion based on the Navier-Stokes equation, and
the Kannan vortex street, justify its consideration as a
candidate for the description of the afferent structure of
the cortex. Through this approach the two striking
features of cortical phenomenology (i.e. ocular domi-
nance columns and sequence regularity) are unified into
a single mathematical description which is relevant to
the anatomy, physiology, and development of the
cortex.

Cortical Trigger Features
and the Feature Detector Hypothesis

Clearly, the orientation of a gcometric approach to the
description of the anatomy and neurophysiology of the
striate cortex is to underplay the functional importance
of trigger features. In particular, what is to be made of
the common identification of cortical trigger features
with the psychological process of feature extraction?
Feature extraction refers to the representation of a
complex sensory stimulus by a set of features which
retain the salient information, but which discard re-
dundant aspects of the stimulus (Werner, 1974). One of
the principal goals of sensory neurophysiology has been
to identify neuronal mechanisms that may be related to
the psychological process of feature extraction. The
view that the existence of well defined neuronal trigger
features may subserve the psychological process of
feature extraction has been both defended (Barlow,
1972) and rejected (John and Schwartz, 1978). This
doctrine has been carried to extreme lengths: Barlow
(1972) has suggested that complex percepts may be
encoded by the firing of one or a few high level “cardinal
cells”. The thrust of this extreme single cell feature
detector position is to reduce complex psychological
processes (i.e. feature extraction) to a level which is
accessible, at least in principle, to neurophysiological
measurement. Since trigger features are readily mea-
sured, a theoretical position that is committed to the
properties of single neurons is well suited to current
experimental strategies. However, therc are severe
logical problems with this position. Very few neu-
rophysiologists would consent to do a double blind
study in which the firing rate of a single neuron in the
cortex was used to guess at the nature of an unknown
stimulus. The firing rate of cortical neurons depends in
general on a wide variety of factors, such as contrast,
stumulus orientation, stimulus length, stimulus velocity,
binocular disparity, vestibular stimulation, and audi-
tory stimulation. It is clear that the unambiguous
identification of a stimulus must in general be a
collective property of the firing of many neurons in
many anatomical brain regions (John and Schwartz,
1978).

Visual Information Processing

Remapping the visual scene via the complex logarith-
mic mapping has a number of powerful advantages
with respect to pre-processing peripheral visual infor-
mation. Casasent and Psaltis (1976), in an optical
computer application, have shown that complex loga-
rithmic pre-processing possesses useful size-invariance
and rotation invariance properties, discussed in detail



by Chaikin and Weiman (1977), and which are derived
and illustrated in the context of the global logarithmic
structure of the primate cortex, by Schwartz (1977a). In
effect, the complex logarithm function provides a sort
of natural “size zooming” capability, a fact which could
have importance with respect to a number of per-
ceptually relevant phenomena.

The fact that the left and right retinal images are
remapped to the visual cortex (the earliest site of
binocular interaction in the primate) by the complex
logarithmic mapping is of crucial importance to any
possible cross-correlational basis of stereopsis. As the
vergence and version angles of the eyes change, the
instantaneously fixated image will have different size
and rotational projections in the two eyes, It 1s well
known that cross-correlation is very sensitive to size
and rotation differences in the templates that are to be
matched (Duda and Hart, 1973). Casasent and Psaltis
have shown that size dilatations of | % and rotations of
1" cause a 20 decibel drop in signal-to-noise ratio, in an
optical computer cross-correlation application. The
solution proposed by Casasent and Psaltis (1976) is a
complex logarithmic remapping of the template.
Following this pre-processing step, which they perform
electronically on a digitized image, there is no signal-to-
noise loss following size dilatations of up to 100 %.
Thus, if cross-correlation is to play a role in the neural
basis of stereopsis, it is necessary to perform an initial
size and rotation normalization on the retinal input.
This is provided automatically by the anatomical
structure of the retinotopic mapping (Schwartz, 1976,
1977a, b).

Finally, the suggestion that the direction of intra-
cortical lateral inhibition lies predominantly parallel to
the ocular dominance column boundaries (i.e. the
horizontal direction in the visual field for the central
107) would seem to have significance for stereopsis as
well: the left and right eye “cortical images™ differ by a
predominantly horizontal disparity (referred to the
visual field) and the cortical lateral inhibition operator
proposed in this paper would act to “sharpen” this
image disparity, just as the circularly symmetric lateral
inhibition operator of the retina serves to “sharpen’ the
contours of the monocular projection of the visual field.
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Note added in proof. It was suggested in this paper that quantitative measurement of the sequence length and ocular dominance column spacing
could supply additional support for the Karman vortex street model of the cortical map. After this paper had gone to press, Wicsel, Hubel and
Stryker [Society for Neuroscience Abstract No. 1863 (1977)] reported accurate measurements for both these numbers : the primate ocular dom-
inance column spacing is 385 microns, and the sequence length for 360 degrees (i.c. two vertical stripes, using the oricntable topology for the
local cortical map of this paper) is 1140 microns. The ratio of these measurements is 0.34, compared with the von Karman ratio of 0.28 predicted
in this paper. Also, Stryker. Hubel and Wiesel [Society for Neuroscience Abstract No. 1852 (1977)] report a measurcment in the cat for 360
degrees of sequence length (1.e. two vertical stripes) of 1740 microns. but do not report a measurement of the ocular dominance column width.
Using a value of 500 microns for the ocular dominance column width 1n the cat [Hubel and Wiesel, J. Physiol. 165, 559(1963)] would yield
a “von Karman ratio™ for the cat of 0.29. Also, the classical von Karman ratio is calculated for idealized point vortices; when vortex structure
of finite size is examined, the stability range may vary within a region centered at 0.28 [Zabusky, N. Coherent Structure in Fluid Dynamics,
presented at Orbis Scientiac (1977)]. Thus. both the primate and cat cortex exhibit sculing that is consistent with the von Karman stability
criterion (Lamb, 1945). Finally. the clliptic function presented in this paper, which has been used 1o represent a Karman vortex strect velocity
potential in the literature (Rosenhead., 1931) is multipic valued; cach cortical hypercolumn may be thought of as a single sheet of the Riemann
surface of this function. By this means, it is possible to have a convenient functional model for the geometric structuring of the corticul map
that is suggested in this paper.



