MEASUREMENT OF THE TWO-DIMENSIONAL STRUCTURE OF THE HUMAN VISUOTOPIC MAP COMPLEX IN V1, V2, AND V3 VIA FMRI AT 3 AND 7 TESLA *

Jonathan R. Polimeni^{†1}, Oliver P. Hinds², Mukund Balasubramanian², André J.W. van der Kouwe³, Lawrence L. Wald³, Anders M. Dale^{3,4}, Bruce Fischl^{3,5}, and Eric L. Schwartz^{1,2,6}

¹Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
²Department of Cognitive and Neural Systems, Boston University, Boston, MA 02215, USA
³Department of Radiology, MGH, Athinoula A Martinos Center, Harvard Medical School, Charlestown, MA 02129, USA
⁴Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA
⁵Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
⁶Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA

January 11, 2005

Abstract

Objective

Previous reports have described the layout of human visuotopic map in V1, V2, and V3 via fMRI, but characterized these data using simple one-dimensional logarithmic or power-law functions—an approach that is insufficient to accurately characterize these two-dimensional structures. This report demonstrates a quantitative fit to two-dimensional visuotopic maps obtained with fMRI. Our objectives are to provide better understanding of cortical receptotopic structure and to establish a body of data providing *in vivo* "ground truth" to be used for extending the accuracy of MRI measurement.

Methods

We present four incremental improvements to fMRI measurement in visual topography studies. (1) We constructed a custom multichannel surface coil covering occipital cortex which produced improved SNR relative to standard head coil systems. (2) The use of real-time behavioral feedback, based on psychometrically established eye fixation performance for individual subjects, allowed us to monitor, and to motivate, compliance with the difficult long-term eye fixation required. This allowed us to collect uniformly high-quality data. (3) We developed a phase encoding stimulus paradigm where the standard M-factor scaling of a black-and-white checkerboard pattern is replaced with a dynamic spatial noise pattern in which the correlation length of the noise is matched to cortical magnification factor. (4) A least-squares optimal quasi-isometric brain flattening algorithm generated flat representations of the two-dimensional cortical surface without relaxation cuts through V1 or any other retinotopic area, and provided a per-vertex flattening error measure (see Balasubramanian et al., this meeting).

Finally, we applied a recently developed model of V1–V2–V3 visuotopy [1] to modeling the fMRI visuotopy data. This model allows for shear (i.e., local anisotropy) in the cortical map and uses a small number of parameters (two global parameters and one additional parameter each for V1, V2, and V3 shear). The proposed model is termed the *Wedge–Dipole* map, since it is the composition of constant azimuthal shear "wedge" map with a conformal "dipole" map that is an extension of the standard log-polar or complex logarithm mapping.

^{*}Presented at 11th Annual Meeting of the Organization for Human Brain Mapping. Abstract number 128.

[†]Contact info: Jonathan Polimeni, Computer Vision and Computational Neuroscience Lab, 677 Beacon St., Boston, MA 02215.

Results and Discussion

Visuotopy data are presented on a population of five human subjects, four collected at 3T field strength and one at 7T field strength. Our preliminary results show that the model provides a good fit to the data and reveals that V1 exhibits less azimuthal shear than extra-striate areas V2 and V3.

Conclusions

The visuotopic structure of human striate and extra-striate cortex appears to be well-described by the quasiconformal map given by the Wedge–Dipole model. This model provides the basic scaffolding upon which the topography of all three visual areas is constructed: the visuotopy of the areas V1, V2, and V3 can be summarized in terms of a single mathematical function with a simple analytic form. Prospects for extending this analysis to more general quasiconformal mappings will be briefly discussed.

References and Acknowledgements

[1] M. Balasubramanian, J. Polimeni, and E.L. Schwartz. The V1–V2–V3 complex: quasiconformal dipole maps in primate striate and extra-striate cortex. *Neural Networks*, 15(10):1157–1163, 2002.

This study was supported by NIH/NIBIB EB001550.